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Preface

The Lie series method for the solution of differential equations,

for the inversion of systems of functions, for the investigation of

the zeros of polynomials, etc., is now 10 years old. In a monograph

published in August 1966 by NASA under No. NASA CR-552, Solution of

Ordinary Differential Epuations by Means of Lie Series, the theore-

tical background (including numerical computation of e. g. Mathieu

and Weber functions) was given.

In this monograph not only _ractical applications of Lie series

are considered, but also a nearly complete bibliography of all work

done using Lie series is given.

A short survey on the contents of this monograph is given in the

Introduction, page I. Futhermore, there are short abstracts des-

cribing the contents of each chapter. These abstracts can be found

at the beginning of each chapter. We treat particle accelerators,

the gravity gradient stabilization method of artificial satellites,

orbit calculations of celestial mechanics and optimization and

nonlinear control problems.

In the US Dr. Wilson, Chief, Applied Mathematics Section of NASA

was the first to recognize the theoretical and practical advantages

of the new method.
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Th_ _. m_ranh comprises the research vJork done in the field tf

Lie series and their physical and technical applications ,1_;1"inS the. se-

cond 5,-_r of the contract. A Lie series is a seri_m o,_ t_e f,_rm

Pf(v,)t "_ f T= + t, f(z) + - ....
_=0 _ "

where f(z) is any function cle_l#ing cn the conT,]ex v,_-'J_b]_s Zl, zo: ..

.. z ; D is a linear 8J ffer_nt_l operator defJn_d by:
n

8

o 62( )D : 61(z ) _z I + + ..o + 6n(Z ) _ fI,?)

where the coefficients 6_(z) represent functions of the complex variables

zI_ Zp, ... Zn which are hn]omorDhic in a certain neighborhood of zo. As

to i!-e proo'f of convergence, see Ref.1 ,2.

Lie series have been used to solve 8ifferential equations of vnrious

_ 6) Other n_]ic_tions are inversions of functional sy-kinds (see _ .I-I . __

stems (s_e Ref.17) _nd parameter representations of algebraic m_nifo],_s

(see Ref.18). Furthermore, Lie series may be used in algebraic geometry

(see Ref.19) and to represent implicitly given functions by means of Lie

series (see Ref.20). Generalized Lie series using higher-order operators

are treated in Ref.21. A very interesting example of the usefulness of

Lie series is its application to the Hamilton-JacObi theory (see Ref.2,

Chapter IV). Their physical applications comprise many problems of techno-

logical and theoretical significance. F.CAP and J.NENNIG (see Ref.22)

*Extensive tables of numerical results for Chapter VI are available upon request from

Chief, Applied Mathematics, (RRA), Research Division, OART, NASA, Washington, D.C.
20546
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e

and F.C7.2 end A.SCIILTT (see ?_ef.23) hove solved initial and bo_nda_$:

value problems, respectively, occuring in reactor tLeory. The "Tbre_- r

Body P_oblem Earth-Xoon-Spaceship" was treated by';_'.CROEZ'_$ER s_d F.CAP

(s_-e Ref.25) , the "Perturbation Theory of Celestial X_'c'_anics Using Lie

Series" by %V.GROEBNER and F.CAP (see Hcf.26) whereas a paper by W.

GIIOEZNER and I.R2_AB (see Ref.27) was concerned with rocket orbits in the

field of several gravity centers (see Ref.27). The investigations of

H.X);APP are of fundamental importance for the attempts to improve the

convergence (see Ref.28,29). Further boundary value problems were treated

by (see Ref.3,58) and J. : mlC (see  ef.30), who is rarticul rly

concerned with neutron flux problems. }Zany of these references are also

cited in a summary volume covering many works on Lie series done by the

Department of ].[athematics of the University of Innsbruck (_,?.CROEBNER),

edited by VI.GROEB_'[ER and H._A?P "Contributions to the ]Zethod of Lie

Series" which appeared recently. As to f_rther physical applications,

we refer to the problems stated in the monograph of the previous contract:

"Solution of Ordinary Differential Equations by _,_eans of Lie Series",

_TASA Contractor Report CR-552, 1966.

The present monograph is concerned with the following problem:

Chapter I presents "The Solution of a System of n-th Order Differen-

tial Equations Using Lie Series", an extension of the considerations on

second-order differential equations of the plst year.

Chapter II is concerned with the Laplace equation; in the course of

these investigations WEBER, HEINZ, WANGERIN etc, functions were formally

represented by Lie series.

Chapter III gives a physical application of great significance in

high-energy physics. Lie series are used to calculate particle orbits in



circular accelerators.

Chapter IV gives another physical application. Covering older

work, it gives a survey on the application and the advantages of

the Lie series method in celestial mechanics, especially, it deals

with the numerical computation of satellite orbits using Lie series

and compares them with other current methods.

Chapter V is devoted to an optimization problem. The Euler-La-

grangian equations of a fuel minimization problem connected with

soft landing on the moon's surface are solved with the help of Lie

series. A discussion of related problems is annexed.

Chapter VI deals with gravity-gradient stabilized satellites

whose equations of motions are solved by means of Lie series. In (6.1)

the general theory is developed and the equations of motion of a

spinning satellite about its center of mass are derived. In (6.2)

the equations of motion of a gyroscope are solved. In (6.3) problems

of numerical evaluation of these solutions are discussed. In (6.4)

some aspects of our numerical calculations arc considered. (6.5)

deals with some more papers.

Further applications of Lie series in physics and engineering

can be found in the papers quoted under the References.



Chapter I 4

The Solution of a System of n-th-Order

Differential Equations Usin_ Lie Series

by F.Cap and D.Floriani

Abstract: In the present work, the solution of a system

of n-th order ordinary differential equations which is

solved for .(n) = f (x,y,y', ... y_n-1)) is obtained by
#Q Q

means of the Lie series as introduced by Groebner. For

this purpose, the concept of a "Lie series" is defined

initially and some important properties are quoted. In the

third part, the system of equations is solved.

(1.1) Definition of Lie Series

We shall introduce a linear differential operator in the follo-

wing way:
n

0 (1,1)D: = (Zo' z1' "''' Zn)" O--_
Q

The F are assumed to be holomorphic functions of the complex variables
Q

z , ...,z . If this operator is applied to another holomorphic function
o Q

f(Zo, ... Zn) , we have

g(z o, .--, zn) - Df(Zo, ..., zn)

which is again holomorphic. The same holds, of course, if D is applied

n times (in the same domain of holomorphy).

With the help of this operator, we may formally set up an infi-

nite series

_ . Dkf(zo , zI ..., Zn) (1,2)
o



whuchwill be written symbolically as

etDf(z) = (exp tD) f(z) (I,2a)

in the following. The series defined in this way have someproperties

which enable them to becomevaluable tools in several fields of ma-

thematics.

(1.2) Properties of Lie Series

(1.21) Absolute Convergence

It is shown in Ref.1, P.7, theorem 2, that, if G is a finite

closed domain of the z space in which f(z ,...,Zn) and D are holomorphic,o

a number T> 0 can be found such that the Lie series (I,2) converge ab-

solutely and uniformly in the whole of G. The function

g(t;Zo, ..., Zn ): _ etDf(zo' "'''Zn)

is, therefore, holomorphic in t, z o, ..., zn.

(1.22) Differentiation

By virtue of this convergence property we have

z) 8 _ tk _tk Dk+1 (1,3)

since the series (I,2) may be differentiated term by term with respect

to t.

Furthermore we have

a _ _ tk _ tk a Dkf(z) (I,4)_-_g(t_z)_ _ _ " Dkf(z)" _ " _i-
Q _ o o Q

since the series on the right-hand converges uniformly (Proof:

Ref.1 ,P.7).



,D

(1 .25) Commutation theorem

The proof of this theorem is here briefly sketched, on account

of its significance.

It is easily shown that

n n

D(7- a .f(zo, ...,z )) _ 7-a .Df(zo, ...,zn)
o Q _ n o Q Q

(1,5)

(with a being constants) and, generally,
Q

a. (Zo,"", "n)l* %" ('o'
o @ o

...,Zn) (1,6)

for any natural number n.

Furthermore, the validity of

k

Dk(f1(_).f2(_))- 7- (_)
o

.(DQf1(z)).(Dk-Qf2(z)) (I,7)

follows from the usual rules of differentiation, where again z is

written instead of Zo, zl, ...,z n.

With this we have (see theorem 5 in Ref.1):

etD_ _ tDf
( a .f (z)) - a .e (z) (I,8)

Q Q Q Q

etD(f l(z).f2(z)) = (etDf1(z)).(etDf2(z)) (I,9)

In particular, it follows from (8) and (9) for a polynomial:

tD(_-aQ.z _ z_ ..... ZQr) =_-aQ.(etDzo)_.(etDzl )_ ...(etDzr )Q (I,10)e o" " "

or briefly:

tDp( ) tD tDzre Zo, Zl, ...,z r = P(e Zo, ...,e )

6



@

@%.

As is shown in the general come,rotation theorem for Lie series, this

equation holds for any functional relationship.

The funtions

tD
Z (t; Zo, zI , ... ,Zn). = e z W

(I,11)

that are holomorphic in t and z , ..., z
0 n

lows

are introduced. From it fol-

Z (t=0;z o, ..., z ) = z .W n
(I ,'I2)

We have then (theorem 6 in Ref.1);

If for a holomorphic function F(z) the power series expansion

valid at the point Zo, Zl, ...,z n converges also in Zo, ZI, ...,Z n

(which will certainly be the case for sufficiently smalllZ - Z I

i.e., for sufficiently small t), we have:

tD F tD ) = F(Zo, ...,Z ) (I,13)e (Zo, ...,Zn) = F(ctOZo , ....e zn n

This follows for polynomials from (I,I0). Let Fn(Z ) be the portion of the

power series for F(z) up to the degree n. We then have because of the

presupposed holomorphy:

Fn(z)-- Cz)= F(z)

lim _ Fn(Z ) = Oz

_or n oo. 3ecause of (I,10) we have

tk
Zn(Z) : _ k'_T " DkFn (z) (1,15)

Since a majorant exists for F(z) the right-hand series converge unifcrmly

with respect to n, i._., we have;

7



co t k _ tklim_--_ • DkFn(Z) = _ . lim DkFn(Z)
o o

(I,16)

and with (I,14) to (I,16):

co tk =_ tk
F(Z) = lim Fn(Z ) = lim_-_-[. • DkFn(Z) _ . lim DkFn(Z) =

o o

oot k tD_(z)"Z_ • DkF(z) " e
o

for n -_ oo .

(1-5) Construction of the Solutions

Let be given a system of differential equations:

_n) . f (x,y,y'
(n-l)

x Q , ...,y ) (_=I,.. _r) (I,17)

!

with holomorphic functions f .y,y', ... is here symbolic for Yd' YO
Q

with 0=I, ...,r. (I,17) can be represented by an equivalent system of

first-order differential equations:

Zo: = x z = (o-I)
Q ,0: _Q

(0-1, ..., n) (I,18)

z' = z for 0=I, ..., n-1
Q ,0 Q ,O+1

z' ,, f (x,zQo)Q,n

(1,19)

This system (I,19) is now solved by the Lie series which is formed by

the operator

D: = _--_--+ z . + f .

Q Q ,O+I Oz Q Ozv_o 0,0 Q,n

with O=I,...,n-I and Q=l,...,r:

0 (etDzo) _ tk Dk (DZoo-Y : FT.,," ) :I
o

(I ,21 )



tk . DkIDz ,d) = etDz
0

etDz d) " I"T _ _+I

8 (etD £ th etDf
,n _ ,n

O

(d=l ,... ,n-l) (1,21)

(follows from (1,3)). VJith

tD tD (I,22): = e z = z + t Z e z
Zo o o _,d" = _,d

(I,21) can be written in the form (because of (I,13):

0
Zo(t;z_..-- 1

b
%7 z d(t;z) = Z (t;z)_, _ ,d+1

8
8--_z (t;,z) = f (Z)_,n

or

a z) IO-'_ Zo(ti =

_n

at_ z,l(t;z) = f,(z o,, z ,d)

or, in terms of the original variables:

fd-1)
Z = x = z +t, Z =y_

0 o _,d

0 8 bn (n-l))
0t ax ax n y_(x;z)_ f_.(x,_,y', .

_n

(I,21) is therefore identical with the original system (I,17), since u-V----

dn 8x
may also be written as -- , if they are understood to be parameters.

dx n

ConsequGntly, the solution of (1,171 reads:

tD (X-Zo) .D z
x(t) = z° + t, y (t) = e Z_,l or y (x) = e ,,1 (I,23)



f o-1
are the initial values of y_ j

w
for t = 0:;

_d-1) (_=Zo) Z
_,(_-1) (t=o) = y =
_ _,d

(1,24)

Using (I,23) and (I,24) the problem of solving (I,25) with the initial

_,d

I0



Chapter II

On the Solution of the Differential Equations Resulting

from the Separation of Laplace Equation in Various Coor-

dinate S_stems

by F.Cap and A.Schett

Abstract: First the R and S-separability is discussed,

then several functions (Weber functions, Bessel functions,

Baer functions, Mathieu functions, Legendre functions,

Lam_ functions, Wangerin functions and Heine functions)

are formally presented by Lie series.

The Helmholtz equation

2
Q + x Q = 0

and the Laplace's equation

,_Q = 0

(II,1)

(II,2)

have a great significance in physics. The_are many equations, impor-

tant for physical and technical applications, which reduce to Helmholtz

equation if time dependence is separated. These equations are i.a.

I) The diffusion equation:

V2 1 Ot

This type of equations appears, f.e., in heat conduction theory, diffu-

sion theory and circulatory motion theory.

2) The wave equation:

2 i
c @t 2

11



3) T?.',ed3m2e4 wave equation;

2
I 2x

V -_ = -7c 8t 2 + R 0t

B

4

q

_.) The transmission line e.qustion;

O

c _t

5) The vecto_ wave equation;

V i-7
C

The equations enumerated under I) _ 5) describe q1_ite gcner_.llj the l,ro-

pagation of wsVc_.

The La_!ace equaticn occurs, f.e., Jn el;-_s_JcJiy theory (stress problems,

tortJon problems, .distortion problems, thermal _]:_sticity prob]..-ms '_.s.o.),

in DotGntial theory and in _uctentisl flow problems. Concrrnin 6 the separa-

bility it is "._cil-known thst these equations cn_ be sep_r;,t_ in sTccial

coordinate system2. One distinguishes R _nd S separability.

S-separability. If ,t,h,e assum2tion

= U l(n 1) • i,T2(n2) • U-z(n])

permits the s_pqration of the partial differential equations (11,1) and

III,2), respectively, into three ordinary differential equations, the

equation is said to be sirn21y separable or S,scper_bl_.

R-separability: If the assum_tio_

U 1 (nl).U 2 (n 2) .U.3.(n 3)

Q - R(nl ' n 2, n 3)

permits the separation of the partial differential equations (II,1) and

'II,4)

12
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(II,_), rcspoctively, into three ordinary _ifferential eq_ations, and

if R = const., th_ <-q_atJon is s_id to be R-sel_arab!e. The quantity R

is .7_fined Jn _ :Le_. 31 •

No cage is _n_-,wn in "_'_hichthe U_qmholtz equation is R-se'7,ar_b]e,

so the question that arisc_s i_ me-rely whether the L_7,1_,ee e,_:uation is _

sei_arable in Some coordinate u$,stems. In the fol]owing ta]'_]e we list the

R and S separability of the Laplace and X_Imhnltz _q_sti,on, respectively

in various coordinate syst_mc. ,?e r___t_Jct o_Irselve to the we],-l_nwn__ 11

coordJnst_ systems Jn which t]-,eHelmholtz equation is ser_rab]e and the

most important coordinate s$'stems with regard1 to technics] 2-c,b]err,s in

w_ Ich the Laplace Ecuation is P_-separable.

In Table ]Ills indicates S-separability

R " R- "

X I! non-sepsrability

13



Coordinate System

I. Rectangular Coordinates

?. C_ rcular-Cylinder

Coordinates

3. Elliptic-Cylinder
Coordinates

4. Parabolic-Cylinder

_oordln& _ ..s

5. Spherical Coor4inates

g. Prelate s-f_ro_dal
Co_rdin&ite s

7. Oblate spheroidal

Coordina _e s

So 2a_rd_olio Coordin,__tes

9- Conical Co_r3"mates

I0. Ellipsoidal Coordinates

11. ?araboloid_l Coordinates

12. Tangent-Cylinder
Cemrd _nat es

15. C_rdiei4-Cylinder
Cnordin:_tes

14. iljpcr_lic-Cyl inder
C_p:_dinates

15. Rose CoordSn,qtes

1_;. C,_ss _ an-Ova_t

Coordinates

17. inverse C_.s_'-i_,n-Ov;'l
Coor_inai_

Tf,.BLE II ,I

2
+× & = 0

S

S

S

S

S

S

S

S

S

S

S

X

X

X

X

X

X

 (nln?)

A._ = o

W(nln2n 3 )

S

S

S

S

S

S

S

S

X

X

_r
d_

X

_r

S

S

S

S

S

S

_r

X

X

_r

X

#

¢

S

S

S

S

S

S

S

14



18._i-Cy_indrical
" Coordinates

19. i[cxw_]l-Cy_inder
Co,ordinates

20. Logarithmic-Cy]ind_r
Coordinates

21. In tan_ Cylinder
Coordinates

29. In cosh Cylinder
Cnnrdinates

25. sn-Cylind_r Cnnrdinates

24. cn-Cy!inder Coordinates

25 . Inverse sn-Cylinder
Coordinates

26. In- sn-Cylinder

CoorSinates

27. In cn-Cylinder
Coordinates

28. Zeta Coordinates

29. T_ngent Sphere

Coordinates

50. Cardioid Coordinates

31. Bespherical "

32. Toroidsl "

33. Inverse prolate

spheroidal Coordinates

34. Inverse oblate spheroi-
dal Coordinates

35. Bi-Cyclide Coordinates

36. 2]_t-Rinc Cyclide

Coordinstes

37. Disk-Cyc]ide Coordinates

38. Csp-Cyclide Coordinates

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

15

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

R

R

R

R

R

R

R

R

R

R

S

S

S

S

S

S

R

R

R

R

R

R

R

R

R

R



All differential equations which result from a separation of the H_lm-

holtz equation are special cases of the B_cher equation. Initial value o

problems of this general equation were solved by Lie Series in Rep.2

and Rep.3 under the Contract NGR52-046-001. Special cases were treated

in Rep.? and Rep.8 under the sameContract and in Ref.16.

The differential equations which result from a separation of the

Laplace equation are also contained in the B$cher equationl It means

that for initial value problems these ordinary differential equations

are solved too. Here we enumerate for the sake of completeness the

types of the differential equations resulting from a separation of La-

place's equation in various coordinate systems. Concerning the solution

of different types we refer to earlier report under the Contract NGR

52-O46-001, if the equation is treated already or shall solve the equa-

tion for initial value problems, if the equation is not investigated in

earlier reports already. Weemphasize, Lie series can only he used to

representate functions in regular domains.

(2.1) Types of Differential Equations Resultin_ from a Separation of

Laplace Equation in some Important Coordinate Systems _=@(ni_2_3)

TypeI: Z"(t)- cZ( )= 0

c being a constant. This type appears in:

rectangular coordinates,

circular cylinder coordinates,

elliptic-cylinder coordinates,

parabolic-cylinder coordinates,

spherical coordinates,

prolate spheroidal coordinates,

cardioid coordinates,

bispherical coordinates,

toroidal coordinates,

(II,1)

inverse prolate spheroidal coord.,

inverse oblate spheroidal coord.,

bi-cyclide coordinates,

16
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oblate spheroidal coordinates,

p_rabolic coordinates,

tangent-sphere coordinates,

flat-ring cyclide coordinates,

disk-cyclide coordinates,

cap-cyclide coordinates.

This type is already treated in Rep.7.

a (b 2 c) Z(t) 0Type 2: Z"(t) + _- Z'(t) - -- + =
t

(II,2)

a, b, c being constants. This equation appears among the equation of

circular cylinder coord.(a = I),

parabolic coordinates,

tangent-sphere coordinates,

spherical coordinates,

conical coordinates,

cardioid coordinates.

Eq.(II,2) is already treated in Chspt.IV, Ref.16.

o

Type 3: Z"(t) + (a + bt _) Z(t) = 0 (II,3)

Eq.(II,5) appears among the equations of parabolic cylinder coordinates.

For the solution of this type see Chapt.IV, Ref.16.

2 2

Type 4: Z"(t) - (_2 + _3 a cosh t) Z(t) = 0 (II,4)

_2' _3' a being constants. This equation results from a separation of the

Laplace equation in elliptic cylinder coordinates. For solving this equa-

tion see Chapt.IV, Ref.16.

Type 5: Z"(t) + coth t Z'(t) + (_2a2sinh2@ . _2 -
_5
' ) Z(t) = 0 (II,5)

sinh2t

4, a, _2' _3 being constants.

This equation appears among the equations in

prolate spheroidal (a:0) coord., toroidal (a=O) coordinates,

inverse prolate spheroidal (a=O) coordinates

17



Type 6:

Z"(t) + cot t Z'(t) + (_2a2sin2t + _2 -_.--_2t)Z(t) = 0
sln

_, a, _2' _5 being constants.

This equation results from:

spherical (a = O) coordinates,

prolate spheroidal (a = O) coordinates,

oblate spheroidal (a = O) coordinates,

bispherical (a = O) coordinates,

inverse prolate spheroidal (a = O) coordinates,

inverse oblate spheroidal (a = O) coordinates.

Eq.(II,6) was investigated in Chapt.IV, Ref.16.

Type 7 :

Z"(t) + tangh t Z'(t) + (_2a2cosh2t - _2 + _2 ) Z(t) = 0
co_h t

_, a, _2' _3 being constants. This equation results from:

oblate spheroidal (a = O) coordinates,

inverse oblate spheroidal (a = O) coordinates.

The solution is given in Chapt.IV, Ref.16.

T_ _ype 8 :
t(2t2-(b2+c2)) (x2t4+_t2+a2)

Z'(t) + t2_b 2 t2 02 Z(t) = 0Z"(t) + (t2_b2)(t2_c2) ( )( _ )

b, c, x, a2_ _3 being constants.

This equation appears among the equations in

conical coordinates,

ellipsoidal coordinates.

For solving Eq.(ll,8) see Chapt.IV, Hcf.16.

t

(if,%)

(:!,7)

(II,8)

18



Type '9:

" 1 (2t-(b+c)) (t _2tP+_st-_2 0
" z"(t) +g{t_b){t_c) Z' ) + (t-b)(t-o) Z(t) = (zz,9)

b, c, _, a2, _3 being constants.

E%.(II,9) results from a separation of the Laplace equation in parabo-

loidal coordinates. The solution for initial value problems is given in

Chapt .IV, Ref.16.

Type 10:

I 1Z"(t) + 2 t-a 1 + 2 + t_-_as]Z'(t) I[bo+blt+b2t2+b_t3,o- ]Z(t) 0+ 4-L (t-h)(t-_2)_(t-_3)2 =

(I.I,lo)

where k, raP' _3' at' bj being constants (i = I ,2,5; j = 0,I ,2,3)

The solution functions of Eq.(II,lO) are ._e"'ine functions (Eef.31).

0

Let aI = O, a 2 = I, a 3 = I/k _,

_2
b =

o "_"

_2 _ k'4

b1 : (_2+2) +-- k_k 2

b 2 = (_2+2) + 2k 2

b 3 = 2}: 4

0 < k2 ( 1 0 _ k'2( I and t = sn2%

then one obtains the equation

sni(dn21 +k2cn2 I)

Z"(I ) -
cn_ dn_

I ,) 2. 1
0

(zz,lo_)

_,,_herethe JacobJ elliptic functions:

sn - sinus am_ _jitu::]inis

cn - cosinus am#litudinis

dn - delta _mplitudinis

19



F.q (II,10a) result_ frown _ _e2aration of the _a_]_.ce e

%,_71. _- coo_'din_te_. Obviously the solution function_, of 7,'q.(il_IOa)

are IIeine functions (see Ref.31).

Let a I = O, a 2 = I, a 3 = k 2

b = -c_2 k2
o

b 1 = (_2-a3) + k2(a2+2)

b 2 = -(c_2+2 ) - 2t: 2

b 3 = 2

p

and

t = dn2_

we obtain from Eq. (II ,I O) the equation

z,,(I)+ Z'(I ) + -2dn _ + _2 + a3 ]

"',Lich is again solved by Heine functions (see Ref.31).

Eq.(II,10b) appears among the equations which one obtains by separation

of Laplace's equation in bi-%_clide coordinates. The general solution of

Eq.(II,10) is given by

z(t)= _(t) + _2(t) (II,11)

where'. (i = 1,2) are Heine functions.
1

For regular domains we can solve Eq.(II,10) by Lie series. As Eqs.(Ii,lOa),

(II,lOb) are special cases of Eq.(II,lO) we have only to treat Eq.(II,10).

The solution representation for initial va_ue problems is given in Chapt.II,

Ref .1 6.

The solution reads:

z(t)_ _ _i _
o

• [f_lC_o)]-l-_z

__¢_ (_-2)

1 + f_)(zo) D3_-2-_z1 I + Zl + tz 2 (II,12)

]
2O



Q

,The operator D is given by:

4 (t_al) (t_a2) 2 (t_as) 2 a-_2

+

(11,13)

t @ a I , t _ a 2 , t _ a 5

_ __L__)fl(t) = -( + tZa2 + t_a5

f2Ct)
bo+bit+b2t2+b_t 5

= -(

4(t_al)(t_a2)2(t_as) 2

A I A 2
+ +

t-a I (t-a2)2 t-a 2

fl (Q) (t) _-I )Q+I )Q+I! (-1 v !•. +

a(t_al )0+1 (t_aa)Q+l

f2(Q)(t) = AI(-I)QQt

(t-a I )0+1

+ A4 +

(t-a3)2

+ (-1)Q+IQt

(t-as)Q+1

A2(-1)£(£+1)! A3(-1)Q_!
+ +

(t-a2) Q+2 (t_aa)Q +i +

A4(-1)e(Q+I)! A5(-1)Q(Q)!
+ +

(t-a}) Q+2 (t-as)Q+1

(ZI,14)

Eqs'CII,12), (II,13), (II,14) solve equation (II,lO) for _ domains.

Another solution representation derived in Chapt.ll, Ref.16 reads:

iztI it olI1• t_ .
Z2(t) = (T-1)T TT

0 e z 2
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OJ=O 0 _{

The integral can be evaluated by an iterative method according to _ef.29.

The symbol a added after the bracket is to indicate that after ap_lica-

have to be replaced by etl_ zI and etD1z2,
tion of the D-operators zI, z2

respectively. XI, ?_2' T and D 2 in Eq. (11,15) are given by the relations:

,+- f2
Xl, 2 = _- +

T __

(II,16)

D2 = 07
o

Eqs.(II,15), (II,16) solve Eq.(ll,10). If the initisl values Z(t=to) and

z,(t--t o) ,_re C±v_n, the solutio_ of Zo,.(II,lO) c_n b_ eval_t_a for re-

sular domains.

The values Z(t:t o) and Z'(t:t o) can b_ look_ up in tables.

The question arises how we can compute the IIeine functions by Lie series

representation Eqs.(il,12), (11,15).

The general solution of Eq.(ll,10) is giveh by

A and B being arbitrary constants,_l, _2 are IIeine functions.

The solution and its derivative is given by:

z(t)_ A_ + B_2 = z1(t)

Z'(t) = A_' I + B_' 2 = Z2(t)

22



W,it}iout restriction of generality we maychoose:

Z(t=to) = _1(t=to) = zl

Zi(t=to) =_2(t=to ) = z2

i.e. we have put A = I and B = 0. Further the equations are valid.

Z(t) _I (t) t t9= : #z 1
O

Z'(t) =_2(t) = _ D Zl
1

(II,17)

For numerical evaluation of_1 we expand Z(t) in the neighborhood of

t_D _
t = to and choose a step size of _t. As t increases more terms _---_-.zI

have to be calculated if the accuracy is prescribed. Since the computers

tw o_
have a limited numerical range, only a limited number of terms -- z

can be calculated.

Consequently, we expand the functions Z(t) at t = t and using a certain
O

step size &t we calculate the function _I in the region (to, tl). At tI

the function_ I will bs expanded again. Continuing this method, we can

compute _I and _' for regular domains.I

In an analogous way one may calculate the function_£ 2 by means of Lie

series. Concerning the important problem of error estimation of the solu-

tion representations Eq.(II,12) and Eq.(I!,15) we refer to Hcf.14, 29.

G.XAESS treats in l<ef.14 an error estimation, which may perhaps be used

for numerical computation of Eq.(il,12). As we have never used this me-

thod, we cannot decide, wether this error estimation is suitable for nu-

merical evaluation of Eq.(ll,12).

H.KNAPI ) discusses in Ref.29 the error estimation of the representation

Eq.(II,15). The usefulness of this method was already proved by numerical

23
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calculations (see Ref.29).
V

_Thether Eq.(II,12) or Eq.(II,15) is more advantagGous for computing the

solutions can only be decided by help of a computer.

Type 11:

Z"(t) + + t-a----_+ Z'(t) +

I [ bo+blt+b2 t2 ]+ 7 (t_al)(t_a2)(t_a3)2 Z(t) = 0

r 18)_!I,

where a I, a2, a3, bo, b 1, b2, b 3 being constants. The solution functions

of Eq.(II,18) are ;Tan_erin functions.

If a I = 1, a2 = I/k 2, a3 = 0

b -- -

o k 2

-_2
(zI,19)

b I - k 2

b 2 = 1 - _3

and

t = sn2_

one obtains frou Eq.(ll,18) the equation

cn I . dn_

z,,(I)+ +
snI

k, _2' _3 being constants

cn cosinus amplitudinis

sn sinus

(II,18a)
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4

,_ dn delta smplitudinis

T_cis _qu;_tion results from a s_'garalion of LsTlace's e_la_ion in

f]_-1"'__n_" coordinntes,

c,_p-e'z,r_ide coordinates.

0

B$' the transformation t on_ . _-= one obtains with Eqs (II,19) and _q.(II,18)

the differential equation

sn_dn I

- z,(_)+

I o 2 _3 (k2cn 2 k, 2 ]

_' 2

bo = (z,/z) 2

bI ---(_2-_._)/I$

b 2 = c_3-1

(II,18b)

This equation appears among the separated Ls_!ace equation of disL--%rclide

coordinates.

If al = 1, a 2 -(k'/Z) 2-- ' _5 =0

b
O = 0; 3

b 1 = (k'2-_.2)/k 2

b2 _ I-_3(k,/;_)2
and

t = on2 I

one obtains from (II,18) the equation

z,,,,_- .ont z' -, - + + (II,18c)
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Thi__ e%uat_on aT,mars. among the scgnratcd L_Incc. eq<_a,o_'onc {n d_ __=-%c!_de

coordinates.

If aI I, a2 k 2= = , a3 = 0

and

= -c_ k 2
bo 3

b I = -a 2

b 3 = 1-c_ 3

t = dn 2 1

one obtains from the origin equation (II,18) the equation.

0

Z"(_) dn_ Z'(_) + -dn2_ + _2 + I + ) Z(_)= O (II,18d)

This equation results from a separation of the Laplace's equation in

flat-ring oooydinates,

ca2-c;{cli,] e coordinates.

tions.

The above enumerated equations are special cas_s of Lq.(II,18). Therefore

we have only to solve Zq.(II,18).

For regular domains we can representate the solution by Lie series.

rot t_is oase the sol_tio__s g_ve_by (==,I_)_n_ (:_,15),respectively.

The operator D reads:

D - 8z ° _ _ + ( - _" + t'a2 + z 2 -

._[ bo+b 1t+b2 t 2 ] 8
_ (t-a1) (t-a2) (t-a3) 2 Zl) _ (II,20)

for t _ al, t } a2, t _ a 5
I
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1 1 1 2

fl (t) = - _ ( _ + t-a--_ + _ )

= _ 1 [bo+blt+b2t2 ]f2 (t) y (t-a1.) (t-a2) (t-a3) 2 =

A I A 2 A_ A 4
- + _ + ,,- _ +

t-a I t-a 2 (t-a3)2 t-a 3

(II ,21 )

A I , A2, A3, A4 being constants.

fl_)(t) (-1) _+1= _!

2(t__l)_+1

+ ( -1 ) ,_+1_,.'

2(t-_2)_+1
+ (-1)Q+I ,._ •

(t-a3)_+l

A1(_1)_+1 A2(_1)_+1 +1f _)(t) w" _! AJ (-1)_ _'=. + + , i +

(t_al)_+l (t_a2) k+l (t_a3) w+l

+
A3(_ I )_+I, !

(11,22)

With Eqs.(II,12), (II,15), (II,20), (II,21) and (ii,22) Eq.(II,18) is

_olv_d s.nd the ;;_n$_rin functions can be computated by Lie s_ries. The

Lie series solution (II,12) and (II,1£). of Eq.( TT_.._,18) converges within q

circle whose center is at t = t nnd wh_-_scrq,_ius extends to the nearest
o

singularity o¢ the 4Jff=r_ntinl equation.

The general solution of Eq.(!l,18) Js given by

z(t; ";:I+ 3w2

where A and B are arbitrary_ . cons±_nts _nd "1''_ W 2 are E,_ngerin functions.

For computing the f,_angerin functions by mesns of Lie °_-_ries we refer to

the trestment under type 10 in this work.

] •In t}_ monograph Ref.16 V/eber functions and }..atnzeu functions ,w_re
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evaluated numerically. Results of these calculations were published

in Ref.16, Chapt.VII and Chapt.VI, respectively.

(2.2) Appendix

Le_endre Polynomials

Here we show that for special differential equations the series

DOZo breaks off, i.e., the solution is represented by polyno-
o

mials. As a special example we investigate Legendre polynomials.

We consider the differential equation which appears in the separation

equations of spherical polar coordinates, after splitting up the sin-

gularities.

(t2-1)Z '' + 2tZ' - n(n+1)Z = 0 (zi,23)

oo t_

z(t)- 7- -j Dgz
o

co __ - 1

z,(t)= Z V_7,_D_z_
O

oo t9-2

z.(t)- _---VT-_(o-11D°-
o

(II,24)

Inserting Eq.(ll,24) in Eq.(ll,25) one obtains:

ooto-2 _ to-1
(t2.1) _------_v 0(0-1) DCz + 2t ---_'-_Dgz -

0 o

t9 Dgz- n(n+1) -_. = 0

so that

co tO (D t_)-2 co t o O

- n(n+1)_ --" t_ DQz = 0
Z--- P_
0
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if U-2 = _ one obtains

E 7 _(_-1) 9'_ -o +2 (_+1 z + 2_DWz - n(n+l)D_;z = 0 (11,24 j)

Necessary and sufficient that Eq.(II,24) is valid is the relation

DUz ((_-1)v + 2p n(n+1)l DU+2- - z = 0

or

z = D_;z (V-1)_ + 2_ - n(n+l)

If D°z and D1z are given one can calculate all DWz by Eq.(II,26).

ForU = n it follows

(II,25)

(II,26)

Dn+2z = (n 2 2- n + 2n - n - n) Dnz = 0

This means, the series _ D_z breaks off, in other _vords we have
o

polynomials.

T%. _._ w#]] known, that Zq.(ll,23) is solved by Leaendre Dolynomia!s" Y i

i.e., the relation is valid:

t# D9z(t)_- V[.' " = Pn
o

n t_

For computing Pn by the series _- _. D_z we need the initial values
o

Z(t= to)andZ'(t = to)

Pn(t--to) andP'(t= to).

or

In analogy one can obtain other polynomials.
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Chapter III

Numerical Computation of Satellite Orbits

Usin_ Lie Series. Comparison with other _ethods.

by H.Knapp

Abstract: A survey (reprinted) on the application

and the advantages of the Lie series method in ce-

lestial mechanics is given.

Using the Lie series theory the formal solution of the astronomical

n-body problem in a region where no collisions take place, is easy.

It could be demonstrated by a special example (J.Kovalevsky chose

this example to test the Lie series method for celestial mechanics)

that after the transformation given by W.Groebner (see Ref.1) the

Lie series converge so rapidly that the method in its present form

can be successfully employed for calculating the orbits in celestial

mechanics. This method of solution is particularly flexible and very

general, and good estimates can be given since the theoretical ex-

pansions and estimations can be directly applied to general multi-

body problems.

(5.1) Presentation of the problems

(3.11) Preparation

(5.111) Coordinate system: Our calculations are based on the following

coordinate system: Let the center of mass of the three celestial bodies

be the origin. Due to the vanishingly small mass of the 8th moon of Ju-

piter, it lies on the connection line Sun-Jupiter. Let the x-axis in-

3O



dicate the direction of the ascending node of Jupiter for the year

1950, let the y-axis be rotated in the direction of Jupiter motion

by 90° relative to the x-axis in the Jupiter orbital plane, let the

z-axis be directed such that we have an orthogonal right-handed sy-

stem. This coordinate system is then assumedto be an inertial sy-

stem since only in such a system Newton's law of gravitation holds

in the simple form. This may be regarded as fulfilled within the

accuracy of calculation required here (up to and inclusive of the

9th significant figure of each step).

(3.112) Designations: For reasons of simplicity we use vectors, thus

e,g,

.p

x = x) y) z

u = U) V) W

X U = XU + yV + ZW

i_1 2 2 2
= + y + Z

 v_,u1

Ox - _x' _y' gz

Is a position vector

is a velocity vector

is a scalar product

is the absolute amount

Is the vector product

is the gradient symbol

m,g,

=) 0 0 0 0

UT_x= u_+ v-_]+ w oz,

Furthermore, we use the following designations:

Sun Jupiter 8th moon

position vectors 55 _2 _I

velocities _5 _2 51

masses M5 M 2 MI

mass numbers m3 m 2 m I

f is the gravitational constant and m. = fM. holds.
i 1
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All quantities occuring in our calculations are assumed to be

differentiable. The three celestial bodies, the Sun, Jupiter and its

eighth satellite are assumed to be replaced by mass points which

are subject to gravitation according to Newton's law.

The positions and velocities

(O) and _i(to) _.(o) i(to) " Ii " i

of the three celestial bodies are given for the initial moment t - to •

and _ (i - 1,2,3) are to be de-The 18 components of the vectors x i i

termined as functions of time such that the mass points move according

to the laws of a three-body problem.

(3.113) Units:

Unit length

k

I L - I astronomical unit = 1495,04200 • 1010cm

unit time

unit velocity

I d - I mean solar day

I Ld -I

unit mass I _ = mass of the Sun

In these units the gravitational constant f assumes the numerical value:

-1 x)
f _ 0,29591220828559 • I0-5_ LSd -2

mass numbers: ms= 0,295912208 • IC-SLSd -2

m2- 0,282552864 • 10-6L3d -2 = m 5 : 1047,355

m 1- 0 (vanishingly small as compared to m 2 and ms)

(5.114) Equations of motion of the mechanical system: According to the

general theorems of mechanics we obtain the following system of diffe-

rential equations for the three-body problem (see Ref.l,p.71):

m m i i

x) This and all other numerical values are taken from a paper by

J.Kovalevsky. Since we are concerned with the explanation of the method

rather than with the values themselves the problem of their accuracy is

of minor importance.
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= U.

(i = i,2,3) (zzI,1)
I 0U

m

M i 0x i

with

U = - f- rik = x - xk
i(k rik z

(the dot denotes differentiation with respect to the time t)

Let the operator belonging to the differential equations (III,1) be

designated by D;

Since mI = 0 it has the following form:

I @ -)

0 @ O @ 0 m2(x2-xl)

N +u3N + r 2

. m_(_}-x_2) 0 m2(x2-_) 0 (III,2)

r_3 0--_2+ r_3 a--_-3

(3.115) Known integrals of the system:

Law of conservation of energy

I _2 M5_52 )Ekin + Epot - 7 (M2u2 + + U = const., since D(Ekin*Epot)

Law of conservation of angular momentum:

_' = M 2 • + M3 xS"u 3

Conservation of center of gravity:

--_ 1 m2_2x S = _ ( + m3_3) with m = m 2 + m3

= 0

(III,3)

(III,4)

is the position of the center of mass of the three bodies.

Since D2_S = 0 and owing to the special selection of the coordinate
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system _S = 0 is valid for all times (See Ref.1, P.75): the center of
v

gravity rests in the origin of the coordinate system. Hence we have:

m2x 2 + m3x 3 = 0

q

xS = 0 and _S = 0 or: (111,5)

m2u 2 + m3u 3 = 0

The nine components of the vectors _S' _S' _ and the constant energy

(111,3) are the 10 algebraic integrals of the problem. With these 10

relations between the 18 unknown components of the vectors _ and 3
i i

(i = 1,2,3) the number of unknown functions could be reduced to eight.

In our example the conservation laws for energy and angular momentum

refer only to the partial problem Sun-Jupiter and permit its complete

integration. With the aid of (111,5) however, the six unknown quanti-

ties can be easily eliminated and the motion can then be described by

only two position- and two velocity vectors: *xs and X'm, U_s and Um.

(3.116) Transformation of variables:

I ._ .@ .@ -_ @ -@

x s = x 3 - x 2 Us = u3 - u2

,,, = - U 2x m x I - x 2 um

Due to (III,5) this transformation is always reversible:

X_ = - X + X
1 m s m

_2 h -_
m s

__ m 2 ._

x 3 = m Xs

Ul = - m Us + Um

._ m 5 ._
u 2 = - _-- us

m 2

U5 = m u8

The converted operator (111,2) has the following form:

(III,6)

(III,7)
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_ _ _ m
D -- u --+ u

s ax m 0x
s m l_s 13

@ @
x -x
s m

+ m} 14 _ }Xs-Xm I

-_ _ m2 _

Xs 0u 5 Xm +
s i_ml

Xs _._

l_Xs 13 0U@m

(111,8)

(5.12) Formulation of the problem

We now have to integrate the system of differential equations

X =
S S

X ----U
m m

u = x

$ m2 ._
U = X

m IX ml}m

X --X X
s m s

+m3 13xs- mi3
S

(III,9)

which belongs to the operator (III,8) under the initial conditions

x (t) = _ (o) _ (t) = x_ (o) u_ It ] = u_ (o)
S " U" S L_.,_" U" III S' U" S

, and _ (t ] = _ (o)

which are to be calculated from the initial conditions _i(to) and

_i(to) for i = 1,2,3 according to the formulas (III,6).

The solution can be easily obtained by Lie series:

If f(t) is an arbitrary function holomorphic in the neighborhood

of t = t of the twelve sought components of the vectors x , Xm, u ,O S S

and _ , then the Lie series
m

_(t-to)D ](o)
f(t)= f _ (t-t)_[o ](o)

_o 9 ! D_f (III ,IO)

holds.
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The superscript zero denotes that after application of the ope-

@ _ and _m therator D instead of the variable components of _s' Xm' Us

components of the constant initial values _ (o) _ (o) _ (o) and _ (o)
s _ m _ S m

are substituted. The trajectories are obtained by writing down this

vectors as(t ) and _m(t) and by analytically continuingformula for the

the series. In this form, the solution can, however, not be used for

numerical purposes since the series converge too weakly. (This has

been distinctly shown by J.Kovalevsky in a comparison with the Cowel

method). Hence a transformation is necessary: First, we determine an

approximate orbit which is then corrected by a perturbation calculation.

(3.2) Solution of the problem

Sun-Jupiter as an unperturbed two-body problem

(3.211) Splitting of the operator: We shall now split D into two

components:

D = D
s
+ D (III,11)

where

= u (III,12)

s

while the remaining terms of the operator (III,8) are denoted by D.

(t): The partial operator D out of the total(3.212) Calculation of _s s

operator D will solely act, if in the place of functions depending on-

ly on _x and _ , but not depending on x
s s m

and @Um, are substituted into

the final formula (III,10). Thus, we have, for instance,

(t-to)D -) o) (t-to)D s
(t) = e x z x

Xs S S
(III,13)
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and, the problem visualized by the partial operator D can be solved
s

separately. We may say: The variables _ and _ are separated from
s S

x and u since they do not depend on these. - D is, however, the
m m s

operator of the unpertubed two-body problem Sun-Jupiter. We shall

give the solution together with the respective numerical data in (3.5).

(5.22) Construction of the approximative orbit of the eigh_satellite

of Jupiter

(5.221) Further splitting of the operator: It would be most natural

to split up D in such a way that its essential part again is the ope-

rator of a two-body problem in this case of the fictive two-body prob-

lem Jupiter - satellite. Rather voluminous intermediate calculations,

which may be a large source of accumulating rounding errors, are re-

quired for the determination of the Kepler ellipse as an approximative

orbit (particularly in the reversal of Kepler's equation!). In order

to avoid these we have decided on calculating with a simpler, although

less accurate approximative orbit.

We shall split the operator

D = D2 + Dm +A m (III,14)

The abbreviations mean

_ 2e
,. u m - c xm 0--ft"

m m

_- 6m _--ff--
m

(III,15)

where

(Iii,16)
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The perturbation function _m has the form

= _ + _

m mI mll
(III,17)

with

# _mi m} Xs

L S

_ = c - _
mii m

(III,17a)

(3.222.) Rough estimation of the order of magnitude of _m:

(3-2221) If x_
s

and -5 , respectively, are substituted in the place of
m

and b in the formula

we obtain for _ an expansion into a series by means of which the order
m I

of mangitude can be estimated more easily than by means of the expres-

sion (III,17a) for
m I

orders:

_mT l_s13

which contains differences of approximately equal

3XsX m 3XsX m _)

i_tL_+-- m- Ix_L2 x ÷ .....
(III,19)

If we consider the first two terms of the series jointly and observe

that

I ° II_. i_i__,I_-__m

I_I>4"95 L and 0.05=<I_I_0_5= "_"_ _av,_n_ most unfavo-

rable case
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I%1 I mI I°221o6
max iX_sl3 Ld-2 (111,20)

(3.2222) _ is less favorable to handle. If we transform _ in

mI I miI

such a way that the Kepler ellipse relations enter the formula as an

approximative orbit we find that

_mlllma x _ 4.05"10 -6 Ld -3 • IAtl (111,21)

where &t = t - to is the length of the concerned step of calculation.

However, we shall not go into these details.

(5.225) Relative orbit of the satellite with respect to Jupiter.

We shall first neglect &m in comparison to Dm, since then also the va-

riables @xm and _m are separated from Xs and _s. In this way, the prob-

lem represented by the operator Dm may be solved separately. The resul-

ting approximative orbit of course deviates from the true orbit, owing

to (III,20) and (III,21). We should note, however, that extremely un-

favourable conditions have been assumed in these estimations; the fi-

gures in (III,20) and (III,21) will be smaller in general!

The solution of the systems of differential equations

with the operator D

lues

Xma = Uma

2

Uma = - c Xma

(III,22)

ma -_ 8 2 Xm->a= Uma _ - c _ and with the initial va-
ma ma

I(o)
m

= x_(°) and u_(°) --u_(°)
ma m ma

for the moment to are obtained in the form of the rather simple approxi-
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mative orbit (ellipse)

[e(t-to)Dma 1 (O) = _(O)x cos c(t-to)+ u*(°) !_in[c(t-to) I
X@ma(t ) = Xma m m c

* le(t-to ) I(°) __(°)c sinlc(t_to)l + u+(°) !_ 1
Urea( t ) Dmau ma m m. - cos o(t- )

( 1,23_

(The additional subscript a is to indicate that these approximatlve

functions, in difference from the sought exact solutions _xm and @Um of

the original three-body problem.)

The connection with time t is evident! the reversal of a Kepler equa-

tion is superfluous.

(5.25) Solution of the three-bod2 problem b2 means of the _iven

approximative orbit; perturbation calculus

(5.231) Transformation of the solution (III,10): With the new symbol

D I = D s + D m (III,24)

we have

f(t) = 7--- O, DI + /km)f (III'25)

%)=0

Expanding (D] + am )9 , ordering according to the positions of Am, and

applying the exchange theorem to the Lie series one obtains the for-

mula (see Ref.1, p.92, formula (12.5e)):

! mD_f (t) dT
5=0 a

o

(III,26)

which is very important for the subsequent calculations. This formula
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b

@xpresses how the approximative solution f (t) has to be modified in
a

order to yield a solution of the original problem. The expression

means that _ Daf has to be calculated first, and that then the com-
m

* and _ have to be substituted by the components of theponents of x m m

approximative solution Xma(_ ) and _ma(_).

(5.252) Expansion of the essential terms in the series (111,26): We

shall now substitute the required special functions X@m(t) and U@m(t) in

the place of the general functions f(t) in formula (111,26). - In the

subsequent numerical computation we shall have to break the correspon-

ding series and to confine ourselves to the essential terms. Of course,

the accuracy of the result may be increased to any degree if more terms

are taken into account. In the present instance, the following approxi-

mations may be sufficient:

t

_m (t) = _ma (t) + I
t
o

t

_m (t) = _ma (t) + I
t
o

t

o i,!(t13;(t-x) 6ma(X 3! ma (x)dx

o

t

_>ma(_)d_÷I (t_)2*
t 2! _ma (_)d_
o

(III,27)

with

__ m 2 3 (Xma_

I ma = o x
iX_mal3 ma [ x>ma I_ ma

I_ _ 13 _..._.._i_ ' i_ ,-_ --_,_,

Naturally, the formulas (111,27) are of use only aa long as the timQ

space It - to l is chosen so small that the further terms of the series
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may be neglected according to the required accuracy. (It is obvious

that t may never be outside the region of convergence of the series.)

(3.24) Estimation of the error due to breakin 8 off the series

(5.241) Region of validity of the formulas (III,27): We know from for-

mula (III,27) that it is the solution of the problem (III,9) within

a certain region of the t-plane. Within this region, the solution

functions constructed by means of formula (III,27) have to satisfy

the differential equations (III,9)o If _m(t) and _m(t) are calculated

from (111,27), one obtains

m 2 +

U_m(t) = l_ma(t)l } X@ma(t) + _mal(t ) + R(t) (111,29)

wh e re

_(t) _ (t-_ & __+2= _! m D _m(_) d_ --
a

(X=O O

") D_+2 X@m(_ ) dT
= (t-T)Ima(_)dT + 7-- =,

t o _=2 to " a

(III,30)

Comparison of (III,29) with (111,9) yields

_(t) m2[ La(t) X@m(t) ] @ •= + 6ml( - ma Ii_ma(t)l 5 iX@m(t)l 5 t) 6 (t)

(III,51)

We shall make use of this in order to determine the order of magnitude

of the expression _(t). With the abbreviation

_m(t) - X@ma(t ) - _(t) (III,32)

where
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t ]_(t) = (t-X)6ma(X)dx + _( )d_ dx

0 0 0

and with the aid of formula (III,18) x) we obtain

(III,33)

Xmi5 =
jX*ma jf J5ma

(terms of _gjher)Ixx)+ "order of

Substitution of (III,52) in (III,19) yields

3 (XmaS) ._

J_ma j2 Xma

+ (III,34)

-_ -* m 3 , 3(Xs_)

6ml 6ma I jX_sj} 6 ix, j2
S

-> terms of h_gher)]
x + ( (_n,55)
s order of

so that

j_(t)J
max I m2_2 _'(t)l_a(t)13

]
m 3

|= 2 _(t)IK(t ) (III,56>

Jx_s(t)J5J

K(t) varies between

J) and 2 2"10 -3 d-22.10 -5 d-2 (for large J x_m (for small J X_mJ).

By virtue of

J_(t)J< (t-t°)2 lJ ]
2 6_ma(t)Jmax + J _(t)Jmax (III,57)

_) 2_ _+_2
ma

The series converges for ' 2 ,2 < I, which is certainly fulfilled

Ima

in a region where formula (III,20) represents the solution, when

jt-tol = J_tJ is chosen sufficiently small.

xx)

The terms linear in J_J are sufficient in estimating the order
of magnitude.
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and with (III,36) we obtain in the most unfavorable case the following

estimate for the order of magnitude of l_(t)l :

i L

(t-t°)2K(t) I 6ma(t)Imax (III,_8)

[ _(t)[ max_ l_(t_to)2K(t)

This estimate is critical for I - (t - to)2K(t) = O, which means near

the perijove for It - tol_ 21 d

near the apojove for It - tol_ 220 d

so that, as it was to be expected, the magnitude of the region of con-

vergence of formula (III,26) depends strongly on the distance between

the two celestial bodies. Formula (III,26) is valid in any case for a

time space of at least 20 days.

In numerically evaluating the formula it will be desirable to chose

the interval rather long. One has to be careful, however, not to come

close to the edge of the region of convergence since then the rapid con-

vergence of the series, which is desired in practice, will no longer

be given.

(3.242) Residue of the series after the second perturbation integral;

choice of proper step length At: The comprehensive deliberations which

have been made to estimate the expression

t t

Q t ma
o o

! mD Xm( x a

(I11,39)

have shown that the step length needs never be shorter than 0.3 d if

the error due to the breaking-off of the series is postulated in one

step of calculation to amount to not more than 5.10 -11 L in the case
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o, lan morethan1013 intheoase
Moreover, one may conclude that the breaking-off error after the

second perturbation integral in first approximation amounts to

t

t
o

i t
(III,40)

in the case of _ , and to
m

o 20
o

in the case of x . Therefore, these quantities may be calculated at
m x)

the end of each step . After this one may determine the step length

permissible at the prescribed accuracy.

In practice one will always stay somewhat below the accuracy limit,

but will calculate several steps of equal length. Only when approaching
,m

x) The program-controlled SIE 2002 computer at the computing center of

Aachen Technical Unive_slty usually calculates with 10 decimal places

only. In this way one can obtain only the order of magnitude of _(t).
/

However, if the solution series are broken off after the first pertur-

bation integral and if the corresponding calculations are carried out

for _(t), one will obtain 2 or 5 figures of the components of _(t).

If in analogy to (III,40) and (III,41) the expressions

_t _(x)dx _ a-_ _(t)
o

ol"__ _(1)dll d_ (at)2 _(t)'_o = 12

are formed, and if these quantities are added as corrections to x@
m

and U*m, respectively, one will obtain improved solutions. A checklng

calculation, also to ten digits, has shown that after 50 steps the re-

sult for x*m is exactly the same as that obtained when two perturbation

integrals were taken into account. The result for u differed but in-
m

significantly (rounding errors), but the time required for qomputation

was only half as long! The same procedure can be made with _(t) if the
computation covers more than 10 digits.

(llI,40a)

(III,41a)
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this limit one will reduce the step length a little (or increase it if

the absolute amouatsof the expressions (III,40) and (III,41) have dropped

below somecertain value). If this is sensibly done by the computer one

has nothing to do but to adjust the length of the first step. Obviously,

this is of particular significance for calculation of rocket trajecto-

ries (when their approximate course is known, and when estimations

according to the above pattern can be made only for short sections of

the trajectory).

(3.245) Propagation of the breaking off error in the analytical conti-

nuation of the solutions: The exact result of the analytical continua-

tion of (III,26) after n steps will be denoted by f(n) throughout this

paragraph. The result involving the breaking-off errors (we shall not

be concerned with rounding errors) of the previous calculating steps

(breaking off after the second perturbation integral) will be termed

_(n). For the error quantities

Pn =

a n

(n)
m

m

(III,42)

we obtain the recurrence formulas

Pn Q" (l+Pn)Pn-1 + (1+Pn) I _t In qn-1 + P'_

qn ( (1+Pn)7C21_tln Pn-1 + (l+Pn)qn-1 + q'_

(III,43)

in which_n denotes the amount of the error in @xm at the n-th step,

due to breaking-off the series, q--nthe amount of the breaking-off

error in the series for _ after the n-th step.
m
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I m3 m 2Pn "_ 2_ l_Xs__mal3 + l_mal5 max

2

I tl
n

(i.e. the maximum of this expression in the time interval of the n-th

step calculation).

The solution of the recurrence formulas may be written straight-

forward, if a good part of the path is computed with the same step

length i At I, if the breaking off errors _i _nd q-'i in the formulas

(III,45) are replaced by their maximum values _ and _, and if Pn is

replaced by the maximum P. Thus,

_i n _2 n

Pn _ _I e + _2 e - p I.

J_I n _2 n

qn < 71e + _2 e - q

(III,44)

where

e

a 2
e

= (1 + P) (1 + _" C I _tl)

= (1 + P) ( 1 -_" clot I)

(III,45)

q _P - _ (l+P) 7c2 Iz_tI k1

_i and 7i are the constants of the general solution of the recurrence

formulas which make the adaption to the initial conditions possible.

With p* being the error of the initial data of our calculation in

I _ m I and q_ the error of the initial data in l_ml we have the rela-

tions

_i = k2 [(p + p')e _2 -- a I
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rl - k 2 (q + q_)e 2 _ b

[ °' 1_2 " k2 -(P + p*)e + a

72 = k2 I-(q + q_)e=l + bl

k 2 == - 2(l+P)V l,.,tl

(III,47)

a = (1+P)[p_-+l&tlq_']+_ + p

(5.25) Calculation of the perturbation integrals

It would be an awful lot of work to evaluate generally the integrals

t

l" (t_)_ [_mD_f(l:)Ia d_

o

(III,48)

occurring in (III,26). We rather go another way which yields the in-

tegrals.in question with sufficient accuracy. We label the wellknown

functions

[Z_mD_f(_)l a - g_(_)

for the 4 equidistant instants of time x)

to , to+h, to+2h, to+3h

where

(III,49)

(III,50)

x) This is arbitrary! The functions could as well be labeled more fine-

ly (in the case of large step lengths this might be necessary; natural-

ly, the integral formula (III,52) would then have to be changed). But

since the step length has to be chosen short anyhow in order to keep

the breaking-off errors, low, and since it is evident that few but fi-

nely graded steps involve just as much work as more steps with a co-

arser grading, there is no reason to label the functions more finely
since the errors due to the chosen interpolation do not reach the

amount of the breaking-off errors. This can be demonstrated the most

rapidly by calculating forth and back with different step lengths.
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h ms (III,51)

and with the aid of the differentiating scheme of the table

t

O

t +h
O

t +2h
O

to+3h

g_(to)

ga(to+h)

g_(to+2h)

g_(to+3h)

A g_(to)

A g_( to+h )

g:,(to+2h )

A2g_(to)

2g_(to+h)

we replace the function g_(_) by the Newton interpolation polynomial.

The differences _Og_(to) are defined as

A_g_(to ) = A_-Ig=(to+h) _ A _-Ig_(to ) (TII,52)

We have then

t

I (t-_) _ i___
_! _ _;_ -

0 (_+I) '.[°_' "o' _+2 -°_" o'

_-_ A2g_(to ) + _2-2_+_ _ (III,53)- 2 (_+2)(_+3) (_+2)(_+3)(_+4) A3g_(to

When calculating back, _t (and also h) has to be taken negative. The

differences _ga(to) are calculated from their definition (III,59) also

in this case.

(5.3) Numerical computations

(5.51) Compilation of the special initial values and of the

formulas for the solution of One operation
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(5.511) Initial instant: Timing begins from 0ct.29, 1958 - the Julian

day 2429200.5 - and continues in days.

(3.312) Relative motion of the sun and Jupiter: tabulation of _s(t):

for the instants

t_ = t o + oh ( P = 0,1 ,2,3) x) (III,54)

the corresponding values of E u are to be determined by inversion of

the Kepler equation

E_ - E sin E_ = _t_ + M (111,55)

Numerical values:

= 0.0484011000 (eccentricity)

I_ = 0.001450215293 d-I

M = 5.645944315

(mean motion)

(mean anomaly)

(IZI,56)

t = 0 (calendar day)
o

The solution of (III,55) with respect to Eu is most easily achieved

by iteration of Newton's approximate formula for solving equations:

E_I -_sin E_I - _tu - M

EUll = EoI - I - £cos E1
(III,57)

where E_I xx) is a value which approximately satisfies Eq.(III,55)

and EDI I is an improved approximate value. Formula (III,57) has to be

iterated until ED = Eu,N satisfies Eq.(lll,55) with a given accuracy.

4

x) The step At = 5h can be chosen arbitrarely

XX)The value of E I corresp£nding to the preceding instant t _I is

best taken as the initial value of EDI (starting from EoI = 5.615994607).
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_h_n, Xs(tD) can be calculated from the resulting values of Eu:

.O15676901-4.186656655sin E_'O.525895551 cos E_I
Xs(t p) " .251555487-0.325515959 sin E_+5.192722650 cos E L

(111,58)

(5.515) Initial data for the orbit of the moon: Computation is to be

carried out with the mass numbers of page 52

m 2 = 0.2825528640"10"6LSd "2

m 5 0.2959122080"10-SLSd "2

(III,59)

and with the values for the relative position and the relative veloci-

ty of the moon, corresponding to the instant t :
o

I-0.1859215874 1 0.0002062301 590 h

_(O)m = 0.0071257657 L u_(O)m = _0.0008942872800

O. 0775628507 [-0. 0005556104520

L d"I

III,60)

(5.514) Approximate orbit for Jupiter's moon: We first calculate

m 2

° " 3m (in,61)

Then, the position of the moon on its approximate orbit at the instants

(III,54) is found from the formula:

E I: L iX'_ma(_ = x@(°)C°Sm C(tu " to) + _ o) c sin c(t 9 - to) (III,62)

The velocity of the moon on its approximate orbit must be taken only

for the end point t5 = to + At of the interval:

51



U_ma(t3) " -x(°)em sin c(ts-to) + m cos (tS-to)

p

(III,63)

(3.315) Computation of the perturbation integrals: Now the functions

@Sma(t) and _ma(t) must be tabulated for the instants (III,54) from the

formulas x).

* I _s(tO)-_xma(t_)|kDjkO[ -I Xs(t_) 1Ic2-Xs(t_)[5 [x@ma(tO)Im2 31@Xma(t_)6ma(t ) - m3 [_s--_t---___ma----_t--),3 +

m2 [_m,(t_) -l ma(t )l3

m_ -_ -

-s(t )--ma(t_)l 3 6ma(t_)

• (_s(t_) - X_ma(tl_))

3(Ima( t_)_ma(t_) ) 1
i  ma(t )12 Ima(t )J -

(III,64)

With the aid of the differences between these tables, obtained from

(III,52) we are able to calculate the perturbation integrals:

t + t

l°
t

o

t + tio
o

t +t

l°
t

0

o t

t
o

_ma(%)d%-(_t)[_)ma(to)+ -_ma(to )+ ¼_2_ma(to)+ _'_3_ma(to) _

(to+Z_t-,)_ma(_)dl=(mt)2[½ _ma(to )+ -_2_ma(to)+ _OAStma(to)_

(to+At-_)2
2, fma (_;)d,=(At )3(__ _ma (to)+ _A_ma (to)+ 128--0_Ima ( to ) _40_5_ma(%_

(to+ t-_) 5 1 1 5

5! _ma(_)d_'(_t)41T4 _ ma(t°)+ _/k_ ma(tQ)+ _'_ma(t°)_ xx)

x) The second constituent of _ma hardly influences the result. The de-

lay of the computer is, however, very small if this part is included in
the calculation, since all the quantities appearing in it had already

to be prepared for the calculation of _ma"

xx) The contribution of this integral manifests itself only with great

steps, but the situation is about the same as in the feregoing footnote.
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(5.5_6) Formulas of solution: The perturbation integrals (III,65) are

.used to correct the approximate solutions (III,62) and (III,6}):

+
t 2 ! ma (_)d_

o o

(III,66)

Now, we replace to by to+(_t ) in all the formulas of (3.31) and proceed

to another operation, using the values of (111,66) instead of those of

(111,60). Again, _t can be newly chosen.

(5.517) Precautionary measures taken to avoid unnecessary rounding

errors: Since the SIE 2002 computer of the TH Aachen, with which our

numerical computations were made, usually calculates with no more than

10 digits some precautionary measures had to be taken to eliminate

rounding errors :

(5.5171) Prior to our computations we reduced the quantity M (and Eo)

by a factor of 2_ in order to maintain the anomaly JEI<I for some

hundred days. Thus, the 10th digit cannot be lost during the inversion

of the Kepler equation;

(5.5172) Instead of to+3h we always calculated to+At since h is equal
@

only within rounding errors so that a noticeable error mightto

appear in the time counting;

(3.5175) When calculating solutions from (III,66), we first determined

the sum of the perturbation integrals and then added the approximate

solution. In this way, the rounding error of the additions enters the

result only once.
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(3.32) Results

(3.321) Trial computations made so far and experience gathered from

them: The following trial calculations were made:

(3.3211) The first informative computations with different steps (one

step forward and one step backward) have shown that formula (III,53)

is sufficiently accurate and that the step constitent with the consi-

derations in (3.242) is approximately Id.

(3.3212) 100 steps were calculated forward and backward with &t=Id x)

This was the most important part of our calculations since they could

be compared with other results.

J.Kovalevsky pointed out that his 12-digit computations, carried out

by Cowell's method with an IBM 650 computer, took 10 sec. for each

operation and that the deviations in the coordinates and velocities,

obtained when calculating with (_t) = 5d 100 days forward and backward

(i.e., in 40 operations) were less than _0 I0-IOL and 100.10 -10• , re-

spectively (unit not given).

We obtained the following results by this method:

IO-digit computation with an SIE 2002 computer took 2 sec. for each

operation (the printing of four lines of data after each operation,

which was necessary for informative purposes but could be omitted la-

ter, took 1.6 sec). When calculating with the step (_t) = Id 100 days

forward and backward (i.e., in 200 operations), the deviations in the

coordinates and velocities were less than I_ I0-IOL and 1 2"I0-11L d-I

respectively. On the basis of this result and with the aid of the (still

very rough) estimate it could be shown in (2.243) that the errors in

x) The relevant section of the table may be seen from the enclosed
table of data.
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the analytic continuation at &t = Id accounted for no more than 50%

of the values indicated, whereas the remaining deviations were due

to the rounding errors. The same computation with &t = 2d yielded

deviations in the coordinates and velocities of less than 28.10-IOL

and 4.10-11Ld -I, respectively. The remaining test time was used for

informative computations with greater steps (3d, 5d, IOd). Here, the

break-off errors were already noticeable. As a result of these com-

putations, we came to the conclusion that the expressions _(t) and

_(t) might be used for a correction (cf.(2.24)).

(3.3215) Integration was performed from _t = Id (then 0.8d, 0.6d, Oo4d)

beyond the nearest distance between Jupiter and the moon, and the time

left was used for backward calculation. The values obtained again

agreed very well. In order to save time, only two lines of values

were printed.

(3.3214) The modification mentioned in the footnote P.45 was calcu-

lated. At the same time, the printing commands were distributed more

conveniently in order to stop the computer for a shorter time. Calcu-

lation and printing took about 2 sec. for one operation so that the

printing process was hardly interrupted.

(3.322) Influence of errors: The results can be falsified in four ways:

(3.3221) by calculating with an insufficient number of protective pla-

ces. Rounding errors may cause serious errors unless they are smaller

than the break-off errors from the very outset;

(3.3222) by using too great steps. If a definite number of terms is

used, the required rapid convergence of series can be achieved only if
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the step _t is reduced;

(3.3223) by successively performing many, sufficiently accurate ope-

rations (if _t is definitely chosen, the excessively strong propaga-

tion of the break-off error can be eliminated only by allowing for

further terms of (III,26). This means, however, that the break-off

error is reduced simultaneously. Reduction of the step alone is not

very advantageous since the required number of operations increases

simultaneously, cf.(III,44).

(3.3224) by inexact tabulation of the functions appearing in the per-

turbation integrals, which can be avoided either by a more exact ta-

bulation or by reducing the step.

The rounding errors show a random character, whereas the other three

error sources reside in the method; however, they can all be controlled:

in(5.5222) by observing the increase of (111,59) and by reducing the

step in time;

in (5.3223) with the aid of the estimate (III,44) which can be improved

since wehave always taken the maximaof the absolute values of the

quantities involved;

in (5.5224) by calculating forward and backward (random sampling) and,

if necessary, by reducing the step.

When_hoosing the step &t, it is necessary that conflicting require-

ments be compensated:

Results of given accuracy are to be obtained with the greatest possible

step and the least possible number of operations. The modification

mentioned in (3.24) is very helpful in this respect, since it makes it

possible to allow for the essential part of the rests of series without
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.determining the required perturbation integrals. Finally, it should

be stressed that we have dealt only with a special example and that

our method can also be used for the numerical solution of general

manybody problems. The elaboration of our method is still under way, and

we hope that we shall soon be able to achieve even better results.

Notes on the table of data:

Since the data were originally printed only for the purpose of ob-

taining information on the efficiency of our method, we expressed

the numbers in the way they were stored in the computer. The comma was

omitted. The last two figures of each number are the so-called charac-

teristics of the values represented as floating-point numbers (charac-

teristic = exponent + 50; the point of the computer is put behind the

sign). The decimal number +0.7, for example, corresponds to the floa-

ting-point number + 700 000 000 050. Another disadvantage of the tables

is that the printed numerical values are not clearl 2 arranged. After

each operation the values were printed in the following four-line

arrangement (dimensions are given in brackets):

time t [d], step _t [d], components of _m(t)

components of Uem(t)

components of _l(t)

components of _s(t)

[_I, X@m(t) ILl

[L ] l s(t)l ELI]

The numbers in the third line give information only on the order of

magnitude of the expression _(t) (we calculated only with ten digits

and several digits were lost in the course of calculation, especially

during the determination of the difference between two approximately
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equal numbers from formula (III,}9): The first two figures and the

characteristic are valid at most, while the other digits are insigni-

ficant.

Table of data:

We do not reproduce the full table which covers 24 pages• Anyone who

is interested to have a copy should write to the author•

A short summary reads

time _dj step _dJ (X@m)x IXem I

o.ooooo + oi.ooooo - 18592138745o + 201577536o50

1.ooooo + ol.ooooo - 18571195715o + 201288442250

• . . •

99.ooooo + o1.o0ooo - 1295145}5750 + 15815132o350

Ioo.ooooo + oi.ooooo - 12852}006850 + 15755oolo15o

99.ooooo - ol.ooooo - 1295145}5750 + 158151}20}5 °

o.ooooo - ol.ooooo - 185921}86050 + 2015775}4650

(3-4) Appendix: The Lie Groebner Method

The solution sought

x(t) m (x1(t), x2(t), ..., Xn(t))

of a system of n differential equations

(III,67)
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with

d x(t) = f(x(t), t)
dt

(III,68)

f(x(t), t) - (f1(x1(t), ... Xn(t ), t), ... fn(X1(t), ... t)

(III,69)

satisfying the initial conditions

X(to) = a m (aI, a 2, ..o an)

is given by the following formula (see Ref.1,52)

where

_=O t
O

(t-_)_ [D2D_x- 1

(III,70)

dr (III,71)

^ (t)) (lIT,72)_(t) - (_1(t), x2(t ), ..o xn

are given functions satisfying the system of differential equations

d
d-T _(t) -- g(_(t), t) (nI,75)

with

g(_(t), t) m (g1(_1(t), ... _n(t), t),..,gn(_1(t),..t)) (III,74)

and fulfilling the initial conditions (III,70), i.e., _(t) = a, where-

l
(III,74)

as the Lie operator D is defined by

D -- fK(x(t), t) _ + _--T

D Iwhere D°F = F, F = DF, D_F = D(D_-IF), if Z(x(t), t) is differentiable

an appropriate number of times, and

a

D 2 = (fK(x(t), t) - gK(x(t), t)) _x K = D - D1 (III,75)

59



6

Furthermore, to calculate the expressions

[D2D_Xilx(^ _),_ (111,76)

the variables x(t) = (x1(t), ..., Xn(t)), t are to be considered in-

dependent in order to obtain D_x and D2D_x. Then x(t) is to be re-

placed by the given functions (III,72), _(_) and t by _. Consequently,

the sought solutions (III,67) of the system (III,68) may be calculated

by formula (III,71) from the given functions (III,72).

In numerical calculations (III,71) has, of course, to be broken

off, and only an approximation of the sought solution is obtained. This

approximation may, however, be used to define a new decomposition of

D into DI and D 2 (eqs.(III,74), (III,75))in order to compute a further

approximation; it can be shown that under rather general conditions

the repetition of this procedure yields a sequence of approximate solu-

tions having the solution sought as its limit (see Ref.2). Starting

from the initial functions

^ °o_(t) _ (oX1(t), -.., n(t)) (III,77)

(I11,79)

the expression

_x(t) _ (Qx1(t), ...,_Xn(t)) (III,78)

is assumed to be the _-th approximation to the solution (m+1 times

differentiable functions), satisfying the initial conditions (III,70),

i.e., _(to) = a, and let

 g(t) d x(t)

by their derivative;_ this case, the decomposition of the operator

D = #D I + _D 2 with
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(III,80)

yields the _+1-st approximation in the form

 ÷ix(t). 0x(t)+ D2D (nl,81)
_O

resulting from Knapp's general method of iteration (see Ref.2). As

mentioned, the sequence _(t) converges toward the solution x(t) for

0 -4oo, for a certain fixed m and a suitable interval It - tol-

i

In order to meduce the computational effort m-5 or 4 should not be ex-

ceeded in practical applications.

Since in practice all functions are usually given numerically

the iteration rule (III,81) should be reformulated in order to avoid

numerical differentiations (III,69). For this purpose, we start from the

functions

og(t ) m (ogl(t), og2(t), o.. ogn(t)) (III,82)

instead of (111,77) and obtains the _-th approximation

ox(t) m (og1(t), #g2(t) .... #gn(t)) (III,85)

by iteration; using the initial conditions (III,70) the approximate

solution

t

_(t) = a + I _g(_ld_ (In,841

o

is found. With the help of the same decomposition of the D-operator we

obtain the iteration formula (see Ref.2)
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mj0+ig(t) = f(g_(t),t) + ____
c_=I t

o

(=-i)_ 2Dx _x(_),_d_ (III,85)

.. n) can be calculated once forSince the expressions _D2D xi(i=1,2, .

all it is not necessary to differentiate given functions numerically.

If the constant initial values (III,70) are taken as the initial

solution an improved solution can be found by applying the iteration

procedure on_ (as far as there is no better initial solution determined

by the problem itself), i.e. (see Ref.2)

Q(t)- _ (tt°)_L=! D_x1
o _=o a'to

(III,86)

or

og(t) : '"_ (_-I)' D_X a,t °_=I
(III,87)

where o \\\-_\\<m. In doing so we obtain the operator

°D2 : (fK(x't) " _-I '(_-IQ) D_XK a! a,t o 0x K
(III,88)

representing a suitable decomposition for numerical calculations.

The functions

A A A

1_(t) _ (ix1(t), ix2(t), ..... , lXn(t))

found with the help of (III,84) and (III, 88) by applying once more the

iteration formula (III,85) are in the most cases a sufficiently exact

approximation of the sought solution (III,67) m the interval (to, t).

If higher accuracy is required it is more expedient to carry out some

further iterations instead of including greater values of m, i.e., to

calculate more complex terms of the series (III,71); the numerical

(III,89)
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"integrations needed are, however, apt to aggrevate the iteration pro-

cess. Fortunately, the method converges rapidly such that there is

seldom need of more than two iterations (see Ref.2).

Theoretically, the following three possibilities of construc-

ting the solution result from the gforementioned facts:

a) m -@oo

b)It -_t I-*0
o

c) %)--)oo

Practically all three possibilities can be combined, which increases

the adaptibility of the method to various problems and to the diffe-

rent domains of their solutions.

The fast convergence of the iteration procedure by Knapp be-

comes obvious from the error estimate (see Ref.2)

A

Ixi(t ) - pxi(t)l_<b

(Knlt_to I m+1)_

; (i=1,2, ...,n)
((m+1)0)!

(III ,90)

where b and K are constants and m is the number of equations of the

system. Consequently, the differences

oS(t) = f(1_(t), t)

A

dlX(t)
dt f(1_(t),t) - f(o_(t),t)-

_ I (t-_)_-llo ]_=I t o (_-I) ! D2D_x ^ dToX(_),_ (III,91)

are integrated to yield the values

I (t-t°)o_(t) : x(t) - ix(t)_- oS(_)d_-__ oS(t)
t
o

(III,92)
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which are a good estimate of the remaining terms; in case of small

step length (t - to) they can be used to correct the results (III,89)

of the first approximation, since in this case they approximately

correspond to the improvement due to the second approximation. The

expressions (III,92) may also be used to automatically adapt the

integration step lengths to the problem to be solved in its va-

rious domains of solution. As to the treatment of error propagation,

see Ref.2.

u-
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Chapter IV

Application of the Method of Lie Series to a Calculation

of Particle Orbits in Accelerators

by F. Ehlotzky

Abstract: In this chapter it will be shown how Lie Series

can be used for a numerical treatment of differential

equations of the isochronous AVF cyclotron, particularly

in order to study stability problems.

It is of interest to test the usefulness of the Lie series method by

a problem which is, at present, very pressing in high energy phy-

sics, i.e., the calculation of particle orbits in accelerators (see

Ref.33), viz. an AVF cyclotron (see Ref-54-37).

Generally, the motion of charged particles in a cylindrically symme-

@
tric magnetic field B (r, @, z) which is constant in time is described

by the following canonical system of equations (see Ref.34,35). (We

chose m ° = c z e = I; m° _ rest of mass of the particle; c = speed of

light; e = charge of particle.)

' = - + (r/q) pz BPr q rBz e

r' = (r/q)p r

, - 2_ 2)1/2Pz = rBr (r/q) PrBe , q = (p2 _ Pr Pz (IV,I)

z' = (r/q) Pz

t' = E(r/q)
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It proved to be expedient to introduce the azimuth @ as the inde-

pendent variable instead of time t; therefore, r' = dr/d@, etc.

Furthermore, already many important informations are obtained in

calculating an accelerator if, to start with, the field accelerating

the particles is neglected, i.e., in the case of a cyclotron the

h-f electric field in the gaps betwee_ the D-s (see Ref.34, 35).

This is always justified if it can be proved that the phase inte-

gral over a closed path of revolution of a particle is adiabati-

cally invariant (see Ref.33). On this assumption, the system of equa-

tions (IV,I) has been derived, and since the Lorentz force is normal

to the momentum _ of the particle, the energy E = (p+1) I/2 is con-

stant. The acceleration procedure is not taken into account with the

considerations made here.

In a cyclotron with azimuthally varying field (briefly, AVF

cyclotron) to which the further investigations refer the azimuthal

periodic variability of the magnetic field gives rise to the necessa-

ry axial focusing of the particle beam. The latter may also be achieved

by purely radial dependence of the field but the condition to be ful-

filled in this case (SBz/Sr) is not consistent with that of isochrony

(SBz/Sr_ 0). In the ideal case, the period of azimuthal variation is

2_/N, where N is the number of completely equal magnetic configurations

causing the desired field variability in the @-direction. The azimuthal

variation of the field is also a function of r, such that the field

has "swirl" structure. In axial direction the magnetic field is, of

course, symmetric with respect to the central plane of the accelerator

which may be identified with the plane of the particle equilibrium or-

bits. Since in the present case rot S(r, @, z) = 0 the magnetic field

may derive from a scalar potential, ice., B _ grad _, where _ may be
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"expanded in a power series of z:

(_nB(r, @))z 2n+I
(-I )n

{ (r, @, z) = (2n+1)! (IV,2)
n=o

which usually may be broken off already at n=1.

/_ = (I/r)(_/_r)r(_/ar) + (1/r2)(_2/Sr 2) and B(r/@) = Bz(r , @, 0).

An analytic expression in the form of a power series in r and a

Fourier series in @ may be given for the funtion B(r, @); it is,

however, more expedient in practice to give B(r, @) point by point

on a r, @-net, and, if necessary, to interpolate between these va-

lues (see Ref.35-37). At any rate, the system (IV,l) cannot be inte-

grated in an elementary manner, but must be treated numerically.

It is, to start with, of particular interest to determine the

equilibrium orbits of a particle and the frequencies _ and
r z

(focusing frequencies) of the radial and axial oscillations (see

Ref.35-37) belonging to several given particle energies for the given

magnetic field configurations B(r, 9). (The particles of the beam

carry out these oscillations about the equilibrium orbits if as is

always the case they do not exactly fulfill the initial conditions

of the equilibrium orbits, a fact that is also necessary to achieve

beam intensity). It is usually sufficient to allow for the linear

deviations, as being remarkably great, which excludes a coupling of

the radial and axial oscillations. The equilibrium orbit is defined

to be that possible particle orbit for which the orbit radius r and

the radial momentum Pr are identical (see Ref.35) at the beginning

and at the end of one of the N identical magnetic field sectors of

an AVF cyclotron. (Since the equilibrium orbits lie in the central
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plane of the cyclotron we have always z - Pz = 0).

The periodically occurring initial values

r O = r(o) = r(@o) ,

Pro = Pr (°) _ Pr(@o )'

t

e° = 2 /N (Iv,3)

defined in this way must be found by successive approximation.

For this purpose the system (see Ref.35)

'= rB(r @)Pr q - ' '

r' = (r/q)pr,

2 2 1/2
q = (p - pr ) (IV,la)

found from the system (IV,I) by specializing for the central plane

is integrated numerically with approximate initial conditions for

the equilibrium orbit. If no better values are available r ° = p/B,

Pr = 0 are chosen as such conditions, where B is the value of the
o

magnetic field averaged over @ (see Ref.35). The integration mentioned

yields the values r(@o) and pr(@o) at the end of the sector differing

by

_I = r(@o) - ro' _2 = Pr(@o ) - Pr (IV,4)
o

from the initial values. We repeat the integration with two modified

initial conditions

r I = r + 6r r 2 = ro o

= Pr = Pr
Prl o Pr2 o

+ 6P r

(Iv,5)

where the choice of 6r and 6Pr is suggested by the deviations (IV,4).

In doing so, the new values r1(@o) , r2(@o) , p1(@o), p2(@o) result at

the end of the sector; by means of the transformation matrix (J) they
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"may be represented as linear functions of the initial values (IV,5)

(see Ref.35)

r1(@o) = ro + I118r' Pr I(@o ) = Pro + I12bPr (IV,6)

r2(@2) _ ro + 121 8r' Pr2(@o) = Pr + 1228Pr
o

The unknown a I and a 2 to be calculated from the system of equations

(111 - 1)a18r + 112a28Pr = _I

121a18r + (122 - 1)a2bPr = _2

(IV,7)

permit the calculation of new improved initial values for the equi-

librium orbit, viz.

_o = ro - a18r' _r = Pr - a26P r (IV,8)
o o

This procedure is repeated until the conditions of the equilibrium

orbit (IV,3) are fulfilled with sufficient accuracy. If _ = 51 + _2

is the deviation of the first approximation, then the deviations of

_2 _, ; therefore, the methodthe following approximations are , ...

converges very rapidly (see Refo35). At the same time also the matrix

(J) is determined more and more exactly; according to the Floquet

theorem it may be used to calculate the focusing frequency from the

equation (see Ref.35)

2 cos (_r@o) = I11 + I22 (IV,9)

The determination of the axial focusing frequency is carried out

in a similar manner, but we shall not treat this problem any longer.

The L.-G.-method will now be used to a stepwise integration
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of system (IV,la), in particular, in Knapp's formulation as an

iteration method (see Ref.2). The interval of integration (0, @o)

will now be subdivided into n equal steps, and, in order to illu-

strate the scheme of calculation, we pick out the first subinterval

(0, @o/n). For = 0 the initial conditions are Pr ' ro correspon-
o

ding to the conditions (III,70). First, the Lie operator D defined

by formula (III,74) is needed for the calculation. Comparing the

general system (III,67), (III,68), (III,69) with the system (IV,la)

of the present problem (@ is to be identified with t) we find

D = (q - rB)(_l_p r) + (r/q) Pr (_lOr) - (al_@) (IV,IO)

With its help we can immediately write down an initial solution

according to (III,86) (m : 2 was chosen)

2

oPr (9) = Pr + @(qo - roB(ro10)) - (92/2)Pr (1 - ro/qo ) •
o o

• ((_Bl0r) o - ro(_Bl_e)o)

r(@) = r
o o + e(ro/qo)p r

o

- (o212)(%/%) •

o 22 /q ) + Pr /qo• ((qo - roB(ro' 0))(I + p r
o o

(IV,11)

2 )I = (OB/ar)r r ' @ = 9' etc.where qo = (p2 _ Pr /2, (SB/ar)o - o
o o

The derivative of the solution (IV,11) with respect to @ will be

designated by ogp(), ogr (). On account of definition (III,88) the

operator oD2 is given in the zeroth approximation

oD2 = ((q - rB) - ogp ) _8 + ((r/q)Pr - ogr ) _ra (IV,12)
OPr

Thus the following first approximation igp, igr may be obtained
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"with the help of (IV,la), (IV,tO), (IV,It), (IV,12), according to

Knapp's iteration formula (III,85). (Let m = m = 2).

^2 )I/2 ^ ,) +
igp(@) = ((p2 _ oPr(8) - or(8)B(o_(@), 8:

@

j ^ r_(_'), 9'd_' ++ (oD2DPr)oPr (9')' o

0

+ I (0 - @')(oD2D2pr )

9

2 _ _2 )1/2 0 l ^igr(@) = (o'_(@)/(p oPr (9) _r (9) + (oD2Dr)oPr(@'),

0

@

A ._ )(oD2D2r) A Aor(@'), @'d@' + (9 - @' oPr(@'),or(@')@'d@

0

(IV,1 5)

In doing so, the following rule must be taken into account in cal-

culating the inte6rands (according to (III,76)):

A(oD2DP_)_p_(@'), n_(@'), 9' = (oD2(q-rB) o (9'), o_(e'), o) --

2 A2. , )112 _(9,)B(o_(9, ) _,) ogp(Q,)" "((P -oPr (@) - o ' - "

^2- , 1/2 A 2 _2 1
• (o_r(@,)/(p2 oPr[@ )) _ ((or(e,)/( p _oPr(@)) /2) .

.(o_r(@')-ogr(9')).(B(o_r(9 '), 9') - o_(9 ')(SB(r,@)/ar)

(IV,14)

Owing to the general formula (III,84) the first approximation to the

solution of the system (IV,la) is given by

IPr (@) = Pr + ig_(@')d@'
o 0

@

lr(@) = r0 + __ igr(@')d@'
0

(H,15)
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If this solution does not yet correspond to the accuracy requirements

an improved operator 1D2 must be determined with the help of (IV,13)

and the general definitions (III,75), (111,80). With its help an

additional application of the iteration formula (III,84), (III,85)

yields the second improved approximation 2Pr , 2r where, of course,

the first approximation (IV,15) has to be substituted on the right-

hand-side of (III,85). The final values pr(@o/n), r(@o/n) obtained

in this way are then the initial values for the next step of inte-

gration etc.

According to the facts indicated at the end of Section 2

the functions

@

oRp (_) " Pr(@) - 1_r(@) -_I °SP(@' ) d@'

o (Iv,16)
@

oRr(8) - r(8) - lr(Q) %/ J oSr(Q')d@ '

0

are a reasonable correction of the first approximation for

sufficiently small step length @o/n; in this formula, oSp(@'),

oSr(@ ') are to be obtained from the general definition (III,91)

specializing to the system (IV,la) and from the approximation

(IV,13), (IV,15) given for it above.

This completes the theoretical discussion of finding the

equilibrium orbits in an AVF cyclotron with the help of the

L.-G.-method.
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Chapter V

Optimization Problems Solved b2 Lie-Series:

Soft Landin_ on the Moon with Fuel Minimization

by F.Cap, W.Groebner and J.Weil

Abstract: The problem of soft landing on the moon with

the additional requirement that fuel consumption during

the deceleration of the rocket should be minimized is

solved formally with the help of Lie series. A corres-

ponding one-dimensional problem having no solution is

briefly reviewed.

The enduring effort to improve technology - generally speaking as

well as, in our case, the technology of space craft - has given

rise to the concept of optimization; optimum control systems are,

therefore, gaining more and more impu_tance in spacc flight° Opti-

mization may be carried out with respect to various parameters, as,

e.g., time of flight or consumption of propellant. In this chapter,

we shall consider the problem of soft landing on the surface of the

moon under the additional _ondition of minimizing the fuel needed to

operate the decelerating rockets.

Optimization problems were for the first time solved with the

help of Lie series by Groebner (see Ref.59) and Dotzauer (see Ref.40);

the present chapter is closely related to their considerations. -

The equations used by us show an intimate resemblance to those used

by other authors (see Ref.41). - Before stating and formally solving
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our specific problem we shall present the general formalism based

on considerations of Ref.39,40.

(5.1) General Formalism

Let p functions xi(t ) (i=1,...,p) specifying, e.g., the positions

and momenta of a spacecraft and q functions yj(t) (j=1,...,q)

representing control forces be given. The equations to be solved

are of the form

x i = Gi(x, y) (i = I, ..., p) (V,1)

They serve as the constraint conditions supplementing the equations

stemming from a minimization of the integral T

T

I(y) =i (F(x,y,y)+ kiGi(x,y_ dt (V,2)

To secure uniqueness, p initial or final conditions of the form

xi(O) = ai (V,3a)

or

xi(T)= oi (V,3b)

respectively, must be given. As will be shown below, Lie series for-

malism provides a convenient method of transforming final conditions

to initial ones.

Briefly, we shall have to find the 2p + q functions xi(t),

yj(t) and AK(t ) - the Lagrange multipliers - from (V,I) and the p

equations :

_Gi _F

_K = -_--ki _-_ + _ (V,4)
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and the q equations:

dtd 0_j0F= ._hi _0GsyjZ+ _yj_F (V,5)

together with boundary conditions.

We shall now pass to the calculation of the corresponding

new initial conditions from the final conditions, making use of

Lie series formalism. Redefining our variables in a straightforward

way appropriate to obtaining Lie solutions our system reads (see

Ref.1 ) :

_i =_i (z) (i = i, ...,2p÷q) (v,6)

Let, e.g., 2p + q - 1 initial conditions

(Zi)t= 0 = ai (i = I, ..., 2p + q - I) (V,7)

and one final condition

F(Z I, ..., Zn)t= T = 0 (V,8)

be given. The solution of this system is given by:

co to

ZZ i = _-_.v_a i = etDa'z (V,9)
so

where the D-operator is composed of the right-hand sides of (V,6)

in the well-known manner (see, e.g., Ref.1). Using the well-known

commutation theorem (see Ref.1) we have:

tD

FCzI, ...,Z2p+q)= e .FCai)i } (t_%) (v,lo)

The function _ defined in this way may be used to reexpress the

final condition:

._ (_ al, ...,an_l, I) = o (v,11)
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where _ is considered variable such that

= b "- Zn(O )

The initial condition representing the final condition reads:

_(0; al, ..., an.1,_) = F(a I, ..., an_1;_) = 0

where the value of ItffiT is connected with b = It=o by

t=T = (eTDI b) _=o

with

d _z(_;a1' "'° 'an-1'I) a

DI =-d_T- {I(_;al, ...,an_l,1 ) 0_

This statement (V,13) is easily proved as follows:

With

and

0
D1z = I, DI • = 0

D_ _ (_; al, ...,an_ 1,1 ) = 0

as .ell as

T = (eTDI

we obtain, using again the commutation theorem (see Ref.1):

_(T,_; a I, ,nn_ 1) (eTDI _ _
.... (_' ;a1'''''an-1) =b =

]; (a, a1, ..., an_1,b) _ 0

q.e.d.

(V,12)

(v,14)

(v,15)

(V,16)

(V,17)

(V,18)

(v,19)
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(5.2) The Problem of Soft Landin 6 on the Surface of the Moon

with Fuel Optimization

Our specific problem to be solved by Lie series formalism is a two-

body problem, i.e., the decelerated motion of a spacecraft in the

neighborhood of the moon subject to the conditions of soft landing

(vt= T = 2-3m/sec) as well as of minimum propellant consumption du-

ring the action of the decelerating rockets. The equations of mo-

tion to be employed read:

* (v,2o,)
X v = V v

@

7mmmvXv @ t
mv(t)_v(t) = r} + y( ) (V,2Ob)

v

where mv(t ) is the mass of the vehicle, _v(t) the position of the

vehicle in the moon's coordinate system, _v its velocity, rv its

distance from the center of the moon and 7 the gravitational con-

stant. _(t) is defined by:

dmv-c _ = (V,21)

with the optimization integral

TI t=extrdt = - c

o o

(V,22)

where c is the constant exhaust velocity of the vehicle. Additionally,

the following boundary conditions are to be satisfied:

;,,(o) -I:_v(O)= , XSv(T) = *Vv(T) : 2-3msec

"_(o) +o _. (_) +
Xv v = XvT= X v ,

(V,23)
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if we assume the initial and final points of the vehicle's path to

be given.

Rewriting our equations to be solved we obtain:

) -- xI G I m x4;1 = I_ (X v X =

) _ x2 = G 2 ; Xs;i = 2, (X v Y

_) - x --c3 = x6;I = 3, (xv z 3

z 4, (_v)x -= = x4 ,

(_) -= Xz : 5, v y 5'

(V,20c)

i : 6, (_v)z _ x6

and

G4IG 5 -

G 6

_'mm

r5
v

with

and

Xv'_: (X 1 , X2, X3)

'4'
Y " (YI' Y2' Y3)

as well as

x11iIx 2 + yq

x 5

Yl

Y2

Y5

(V,24)

(V,25a)

(V,25b)

my(t) _ Y4

such that we have to solve six equations of the type:

x i = Gi(Xl,X2,Xs,X4,X§,x6,yl,y2,y3,y4)

which are supplemented by the Eulerian equations stemming from the

(v,25c)

(V,2Od)
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. optimization integral:

0Gi 0__F

iK = " Kz. ki _ + 0x K (V,4)

d OF

dt Oyj -

OGi 0___F

i 0yj + 0yj
(v,5)

where in our case:

I _I 2 2 2'

F = -c VYl + Y2 + Y3 (v,26)

such that (V,4) becomes

• 0G6-
= 0x K - 0x K - _x K

(K = 1,2,3 ) (V,4a)

and

_4 = -x1' _5 = -x2' _6 = -x3 (V,4b)

since the Gi(i : 1,2,3) are of the form GI E x4, G2 _ x5, O5 _ x6

and the F are independent of xi. The equations (V,5) yield:

v=6 OF
d OF : 0 : X4 _ + X 5 __2 + X6 __ + __ (V,5a)
dt 0yj 0yj 8yj 0yj 0yj

(j = 1 ,2,3,4)

such that we have 16 equations for 16 functions from which 12 equa-

tions for 12 functions (i.e., corresponding to the number of boundary

conditions) can be deduced by elimination. The final conditions

_v(T) _(T) and _v(T) @= = XvT are transformed to initial ones by the

process given above.

It was not possible to carry out detailed or numerical calcu-

lations since NASA stopped its financial contribution.
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The one-dimensional problem of soft landing is treated in

many papers (see Ref.42-47).
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Chapter VI

On the E_uations of Motion of Satellites

by

F. Cap, D. Floriani, A. Schett and J. Weil

Abstract: After discussing the forces and torques acting on a

a satellite we turn to the expansion of _(_) in a Taylor series

(_ = _(_)m). Explicit expressions of the first four terms of this

series and the complete equations of motion of a satellite. In

section (6.2) we present the solution of the equations describing

the heavy asymmetric gyroscope in the forms:

a) Solution = Solution (heavy, symmetric) + contributions

from asymmetry.

b) Solution = Solution (symmetric, forcefree) + contributions

from asymmetry and forces.

c) Solution = Solution (asymmetric forcefree) +

contributions from forces.

Insection (6.3) the above mentioned equations of motion are solved

using Lie series. In section (6.4) some aspects of our numerical

calculations concerning the motion of a satellite about its mass

center are discussed.

(6.1) The D2namical Equations Describing the Motion of a Satellite about

its Mass Center by A. Schett, J. Well and D. Floriani

(6.11) Introduction

Many problems posed in satellite research work require the

fixation bf the satellite's position with respect to the surface of the

earth. For this purpose, a number of active methods has been developed

since the beginning of space flight whose success depends on the precision
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with which each element of the regulating mechanism is operating; further

a continuous input of energy isnecessary. Recently, great attention was

paid to the idea of utilizing the earth's gravitlational and magnetic

fields for the purpose of stabilization. This aim would be achieved if

for certain initial positions torques becameeffective in the further

movementof the satellite along its path such that it is, so to speak,

rotated back into its original position relative to the earth's surface.

Consequently, the influence of very small effects, as, e.g., radiation

pressure and air friction (treated in (6.12)) must be regarded in the

theoretical treatment of the problem. For this purpose also higher terms

of the Taylor series expansion of _(_) were considered here in the

equations of motion since the first two terms are certainly insufficient

(see Sect. (6.13)).

(6.12) A Survey of Forces and Torques Actin_ on Satellites and a Surve 2

of Papers Dealin$ with the Attitude of a Satellite and with Gravity

Gradient Stabilization

If we consider a satellite orbiting around the earth, six second-order

differential equations are required to describe its motion (see Ref. 52).

Three of these equations serve to describe the motion of the center of

mass whereas the three remaining ones specify the orientation of the

satellite. Several perturbational torques and forces act on the satellite.

It seems to be desirable to obtain a solution in which the perturbational

torques and forces are represented in separate form.

In Sect.(_.2), we shall show that Lie series representation of the

solution to differential equations make it possible to split the solution
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into several terms each of which is responsible for a definite physical

effect• This splitting off procedure can be used to represent the solution

describing the motion of the satellite.

In order to find a favorable representation in numerical evaluations,

it is, however, necessary to know the order of magnitude of the individual

forces and torques. Our interest will, therefore, be focused on the

perturbational forces F
P

and the torques M . Besides some analytic
P

expressions for these forces and torques we shall present some numerical

data for F and M
P P

in order to compare the respective orders of magnitude.

(6.121) Survey of Forces and Torques Acting on a Satellite:

(6.1211) The Forces F (Ref. 53):
P

(6.12111) Analytical expressions for Fp:

With respect to a frame of reference whose origin lies at the center

of mass of the earth, we have the following principal forces acting on

a satellite:

F : the gravitational forces which are caused by a spherically
O

symmetric potential field.

F 1: perturbational forces corresponding to an asymmetry of the gravita-

tional field caused by oblateness and inhomogeneity of the earth•

_2" drag force, i e , forces due to the fact that the vehicle moves in

a rerified gas rather than in vacuum•

F}: force due to radiation pressure•

F4: gravitational forces due to the action of the sun and the moon.

P5: is the magnetic force and

F6: is the force due to casual effects.

we shall now enter a more detailed discussion of the individual forces:
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a) F : The gravitational force is given byo
@

_grF =
O r 3

(VI,I)

with
= h2M.m

h 2 is here the gravitational constant, M the mass of the earth, m that

of the satellite, and _ is the vector pointing in the direction of the

satellite.

b) FI: The potential taking account of the asymmetry of the gravita-

tional field is given by (Ref. 55, 56)

Utota I = Usymm + Uasymm

where

U
asymm _{j R Rnm= K__ n( )nPn(sin _) - (r) Pn(sin _)(Cn,mCOS m_ +

r n=2

+ Sn,mSin m_)_

R is the equatorial radius of the earth, the P are the n-th order
n

Legendre polynomials, the J are coefficients and B is the angle
n

between the equatorial plane and the plane of the orbital motion.

The coefficients J can be determined by measurement; their values
n

up to the neinth order are (Ref. 57, P. 71).

J2 = (1082.48 Z 0.04).10 -6

J3 = (-2.566 Z 0.012).10 -6

J4 = (-1.84 _ 0.09).10 -6

J5 = (-0.065 _ 0.019).10 -6

J6 = (0.59 _ 0.09)'10 -6

J7 = (-0.469 _ 0.021).10 -6

(VI,2)

(vi,3)
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J8 = (-0.02 _ 0.07).10 -6

J9 = (0.114 $ 0.025).10 -6 (VI,3)

Using (Vl,2), we obtain for the force due to gravitational asymmetry:

F1 =Vu (vz,4)

with _ = (_ _ _)

x, y, z is a frame of reference fixed with respect to the earth and

having its origin at the center of the earth. (Remark: The coefficients

C and S are much more difficult to determine than the J
n,m n,m n

(Ref. 57, P. 72)).

c) F2: The drag force F2 acting on a satellite is given by (Ref. 57, P. 242)

@ = 1 •F2 D p s'l l (vI,5)

where CD is the dragcoefficient usually taken to be 2.0; p is the

atmospheric density; it is plotted in a diagram in (Ref. 59, P. 88).

S is the area occupied by the satellite and projected normally to

the velocity vector v. The following table (VI,I) shows the atmospheric

density p as a function of the altitude h (Ref. 59, _. 88):

height )/em-'_above the surface p(density
of the earth

400 km 10 "14

600 km 10 -15

800 km 10 -16

1000 km 10 -17

Table (VI,I): Atmospheric density as a function of the altitude above

the surface of the earth.
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In a first approximation the density can be described by the following

relation (Ref. 59 , P. 124):

_1 _220-Flog p(h) = logstandP(h ) - (220,h, _ + a(h).g(a) +

+ O(h).f(0) +
,J_j

(VI,6)

The functions i(220,h), a(h), g(a), @(h), f(@), K(150,h) and A are
P

plotted in diagrams in the paper by Paetzold (Ref. 58). V/ith the help

of this diagram p(h) can easily be computed. In Ref. 59, P- 86, a more

complex formula for F2 is given:

F2 = 2s exp [-(s' (S') + +

It+ +erf(s') • 2-_') l+(s') + 7 T s

(VI,7)

where S is the projection of the satellite's cross section normal

to the velocity vector, p is the density, U is the relative velocity

of the free stream, s is the speed ratio, s' = s-sin _, _is the local

incidence measured from the surface. _' is the surface reflection for

normal momentum, T is the surface temperature, T the absolute
W

temperature and

erf(x) = _fexp(-x'2)dx '
with O<_.erf(x)<l.

d) _5: The force F5 is caused by the radiation pressure (Ref. 60, p. 119):

F 5 S .1'4"106= rad c (VI,8)

where c is the velocity of light, and Sra d is the area projected

normal to the vector pointing from the space vehicle to the sun.

The equation holds for an intercepting surface; if the rays are totally

reflected, (VI,8) must be multiplied by a factor 2. A more sophisticated
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_ormula for F5 is given in Ref. 59, P. 89. The solar radiation

reflected from the earth is negligible.

e) _4: The analytic expression for the perturbational forces caused

by the sun and the moon reads:

F< f2 m.m.F4 = _ . _ i
l<J I{i-_jl i=0,1; j=1,2 (VI,9)

where mo is the mass of the satellite, m S the mass of the sun,

m2 the mass of the moon, f2 the gravitational constant and

÷
r. are the respective position vectors.
i

(6.12112) Order of Magnitude of the Individual F :
P

The analytic expressions for the perturbational forces F are rather
P

complex and depend on several parameters. The following table (gI,II)

presents numerical data from Explorer XI for the purpose of comparing

the magnitudes of the different forces.

Table (Vl,II): Data of Explorer XI

FI

<10"1m
s

F 2

N 3.Io-5.s

(see Ref. 59,

p. 199)

(see Ref. 59,

p. 2o5)

(The value of F is

given in dyn) p

F4

m **)
s

(see Ref. 60,

p. 126)

(Fmoon_10-5)

(F ,m )
sun s

F
o

I02m *)
S

Satellite Explorer XI: r = 7512 km (the half major axis on the average),

its velocity is about 8 km/sec
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*) m is the mass of the satellite (given in gr)
s

**) this seems to be in contradiction to the effect;

The contradiction mentioned is resolved by realizing that the gravity

the earth experiences under the influence of the sun is, on its time

average, equal to that felt by the satellite, i.e., that the satellite's

path about the earth is only perturbed by the sun's gravity insofar as

its distance from the sun is sometimes smaller and sometimes greater

than that of the earth. These differences are, however, comparatively

small (Compare 7000 km with 150 millions of km!).

The acceleration due to the radiation pressure of the sun is,

however, vanishingly small because of the great mass of the earth

(mE = 6.1027 gr), it is only 3.10 -15 cm/sec 2, i. e., in this case the

effects do not cancel.

The following table (VI,III) shows the relative values of the drag

forces as a function of the altitude:

F 2

100 dyn

10 dyn

5 dyn

I dyn

0,1 dyn

0,01 dyn

Altitude of

Explorer XI

400 km

500 km

600 km

800 km

1000 km

1200 km

Table (VI,III): Relative values of the drag forces as a

function of the altitude

The forces Fo, F I, F3, F4 vary only slightly with the altitude.
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The following table (VI,IV) shows the corresponding values for

Echo I.

F
o

_10 2 m
s

F I

<I0 -1 m
s

F 2

_0,2.10"2S

NO,2.10-SS

N0,2.10-4S

..<),2.10-5S

_0,2.10-6S

F4

Nm
s

Altitude

400 km

600 km

800 km

1000 km (v=7,5 km/sec)

1200 km

The F are given in dyn; m
p s

quantities.

and Sra d means the numerical value of this

Table (VI,IV): Data of Echo I

_.1212) The Torques M Acting on a Satellite:
P

(6.12121) Analytic Expressions for the Torques:

The relevant torques will be designated in the following manner:

M is the gravitational torque caused by a spherically symmetric
O

potential field

M I is the torque due to gravitational asymmetry

M2 is the drag torque

M 5 is the torque caused by radiation

M4 is the torque due to the gravitation of sun and moon

M 5 is the magnetic torque

M6 is the torque due to casual effects, as collisions with
meteorites, etc.
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Let us now discuss these torques in somedetail:

a) M : )_ is given by
O O

M0 = dm (VI, 10)

where the integral is taken over all elements of the extended

body, and _ is the force density (i. e., per unit of mass). [_I

is the distance from the center of rotation (i. e., the center

of the earth) to the mass point.

b) M2: M2 is given by the following expression (Ref. 57, P. 242):

M2 = axF 2 (VI,11)

where I_I is the distance of the center of pressure from the

center of mass. F2 is defined by Eqs. (VI,5) and (VI,7), resp.

c) M}: M} is specified by an equation that is completely analogous to

(VI,11):

÷ _ _ _-_-_J_vw,t°_
M} = bxF3

where I_I is the distance of the center of pressure from the

center of mass. F} is defined by Eq. (VI,8).

d) M4: In analogy to (VI,IO), the torques due to sun and moon gravity

are given by:

M 4 = dm

where f _ga±n is a force density and r a position vector.

e) M5: The magnetic torques may be due to different reasons:

a) The induced magnetic torque iM5 (Eef. 57, P- 241 and Ref. 59,

p. 203):

iM5 = MxB

where
(_r -1 )

-
1_o
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with
_r for the relative permeability, _o for the per-

meability of free space, V for the volume of the material in

the walls and A for the unit vector along the longitudinal axis.

8) If the satellite has a permanent magnetic moment, as, e. g.,

caused by magnetic coils or rods, additional torques pM5will

occur. Equations for these torques can be found in the papers

by F. Mesch, et al. (Ref. 54, P. 3, Ref. 57, P. 245-246).

y) Torques Due to Charge Separation (Ref. 59, p. 203):

If the satellite is constructed by conducting materials it can

be considered as a conducting cylinder moving through a magnetic

field, and an electric field of approximately 0.4 volts per

meter can be induced across the longitudinal axis of the

cylinder. This produces a charge separation that may influence

the impact parameters of the incident ions. Thus the negative

end will appear to have a larger drag cross section than the

positive end to the positively charged atmospheric ions. The

interesting feature of this mechanism is that each end alternates

his sign during a tumble cycle so that the effect does not cancel

owing to rotational symmetry. In the case of Explorer XI a net

torque of 0,06 dyn'cm due to charge separation is obtained.

6) Torque Due to Eddy Currents (Ref. 59, P. 201):

A conducting surface rotating in a magnetic field experiences

induced eddy currents producing torques tending to oppose the

rotation and to decrease the angular momentum of the body. This

torque is smaller than 1,8 dyn.cm.
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The following table (VI,V) compares the most significant moments

in the case of Explorer XI.

M
o

max.: 113 dyn.cm

av.: 57 dyn.cm

M 2

max.: 168 dyn.cm

av. : 0 *)

M4

max.: 11 dyn.cm

av.: 6 dyn'cm

Remark: (J1_J3) = 1,587.108 gr.cmY;
m-h = 3,986.105 km3/sec 2

max.: maximum

av.: average (over a tumble cycle)

R = 7512 km; v = 8 km/sec;

Table (VI,V): Data of moments of Explorer XI

(6.122) Survey of Papers Dealing with the Attitude of a Satellite

and with Gravity Gradient Stabilization:

In the following a short summary of the most important results

concerning attitude and stabilization problems is given. The survey

will be arranged with respect to three items:

Derivation of the dynamical equations,

Expressions for gravitational torques acting on a satellite,

Stabilization of satellites.

(6.1221) The Dynamical Equations for a SateYlite's Attitude in the

Individual Papers:

Using the same frame of reference as in our paper F. W. Raymond

*) The tumbling motion results in an equal and opposite torque a half

tumble cycle; hence, the first-order torques average to zero owing to

the rotational symmetry. Second-order effects are negligible.
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(R_f. 62) obtains the following components

N_ = (lu_12+-l_)m._._. + l_Imi_i[i - K_I
R _ tel-J1

N_ = "R-_5 i_i_i + l_Imi_i_ i - K_2

II 'N_ = -u mi_i_ i + _ mi_i_ i - K_ 5

where again summation over i is implied (magnetic forces, perturbations

of gravity due to sun and moon, radiation pressure and drag are neglec-

ted). The terms K_. are damping terms due to the satellite's tumbling.
I

The equations are identical with ours for the spherically symmetric

case; Raymond does not solve them.

DQvid L. Mott derives in Ref. 63 the same equations agreeing with ours

and those of Raymond.

Linearized dynamical equations of coupled orbital and attitude motion

are discussed in a paper by B. Lange (Ref. 64), who u_es a reference

frame fixed with respect to the satellite.

In his paper Irving Michelson (Ref 67) uses linearized vibrational

equations for small an_lar displacements a, _, 7 from a gravity-gradient

stabilized equilibrium (the principal inertia axes lying at equilibrium

in the directions of orbital angular velocity_ the instantaneous earth

vertical and the opposite direction of the instantaneous linear orbital

velocity, respectively). The equations read:

A_ + 5_ 2(B-c)a = O

B_ + 4_2(A-C)_ + I_I(A-B-C)4 = 0

where A, B, C are the principal moments of inertia, u is the orbital

an_lar velocity for a circular orbit. The equations are characterized

by the fact that the components of the gravitational torque are included
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and that they describe a motion about a point not fixed in space. They

are solved in a manner indicating that there is an infinity of equi-

librium satellite orientations in which, therefore, no attitude control

is needed.

In his paper (Ref. 68), Robert R. Newton considers the problem of

damping the librations of a prolate axially symmetric and gravitationally

stabilized satellite by coupling it to the longitudinal oscillations of

a mass-spring system connected to the satellite. Three equations of

motions (for the mass of the satellite, the mass connected to the other

end of the spring and for the libration component in the plane of orbit)

are given. The coupling for librations in the plane of orbit is linear

to the libration amplitude, and hence is effective for all amplitudes.

Coupling for librations normal to the orbital plane is quadratic in

amplitude and has low effectiveness for small amplitudes.

In his paper, B. Etkin (Ref. 69) presents a theoretical framework

for analyzing the motion of a multibody satellite in a gravity-stabilized

orbiting reference frame. It consists essentially of expressions for the

forces and momentsof the forcefield on arbitrary bodies and of their

utilization in Lagrange's equations to find the equations of motion. It

is applied to the analysis of a specific system designed for attitude

stabilization. The equations are linearized and separated into two groups

(longitudinal, i. e., parallel to the orbit plane, and lateral, i.e.,

transverse to the orbit plane).

In his paper, E. E. Zajac (Ref. 70) considers the damping of a two-

body, viscously coupled, gravitationally oriented satellite that is in
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a circular orbit. A graphical method for determining the damping rate

as a function of the damping coefficient is presented. The following

system of equations is quoted for a two-body satellite in a circular

orbit linked at the two-bodie's centers of mass by means of a linear

spring:

A + 2 K(

A d_ da
5_2(B2-C2)8 - K(a-#) - =

2dt2

where a, _ are small deviations from the local vertical, Ai, Bi, Ci

are the principal moments of inertia of the two bodies, l_ I is the orbital

frequency, K is the spring constant of the coupling spring, and _ is the

damping coefficient.

In his paper, Paul F. Hultquist (Ref. 71) computes the angular momen-

tum in pitch and roll imparted to a totally stabilized, solar oriented

satellite by gravitational torque over a year's time for a jet controlled

satellite with one axis normal to the ecliptic and a transverse axis

along the solar vector. Both circular and elliptic orbits are considered.

In his paper, Robert E. Roberson (Ref. 72) examines the foundations

of methods for determining the vertical by differential gravity measure-

ments.

In their paper R. D. Cole, M. E. Ekstrand and M. R. O'Neill (Ref. 73)

consider the problem of what torques are necessary to orient a body in

a given manner (in the paper, the satellite is assumed to be a symmetric
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rotating rigid body). The differential equations of motion of the

symmetric body are given in a body-rotating coordinate system XI,

X2, X3 by Eulerian equations of the form:

Aux + (C-A)UyUz = Lx

A_y + (C-A)UxUz = Ly
C_ = L

z z

where Ux, Uy, u z are the components of the angular velocity; Lx, Ly, Lz

are the components of the torque, A and C the principal moments of

inertia.

In his paper, T. R. Kane (Ref. 74) is concerned with the investiga-

tion of the stability of a certain type of motion of an unsymmetric

rigid body in the gravitational field of a fixed particle: the mass

center of the body describes a circular path centered at the par-

ticle, while one of the body's principal axes of inertia remains

normal to the orbit and the second one oscillates about the line

joining the particle to the mass center of the rigid body. The pa-

per shows that not only the inertia properties of the body, but also

the amplitude of the motions must be taken into account, and that

the problem is essentially three-dimensional, i. e.,_incorrect results

are obtained when only planar motions are considered.

The equations derived by Kane are essentially the same as ours.

In the ESROTM-27 report (Ref. 93) rigid body kinematics and dynamics

are discussed in relation to satellite attitude control problems. Atten-

tion has been given to ways of expressing axis transformations in forms

suitable for computation. Equations of motion are developed for systems

of pivoted rigid bodies, with discussion of the simplifications which can
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often be used. The free motion of a rigid body is treated and equations

are presented for small displacements of a rigid body relative to an

earth-pointing axis system.

(6.1222) Expressions of Gravitational Torques Acting on a Satellite:

In their paper, R. E. Roberson (Ref. 84), D. Tatistcheff and Doolin

(Ref. 85) derive the gravitational torque on a satellite by expanding

the potential energy about the center of mass in a Taylor series and

differentiate with respect to the generalized angles expressing the orienta-

tion of the body-fixed axes.

In his paper, R. A. Nidey (Ref. 75) shows that the gravitational

torque on a rigid unsymmetrical body is normal to the local vertical. The

component of the torque in a given horizontal direction is shown to be

essentially proportional to the product of inertia relative to the vertical

and horizontal planes intersecting in the direction of interest. Since the

average gravitational torque on the system is given by

...... Mavg = _._2.AI.28

@ .

where u is the angular velocity of the satellite, _I the longitudinal

principal moment of inertia decreased by the transverse and 8 the

inclination of the longitudinal axis of the satellite to the orbital plane -

continual acquisition of angular momentum can only be prevented if the

satellite has equal principal moments of inertia or internal weights

must be appropriately manipulated such that the gravitational torque

vanishes.

In his paper, P. S. Carroll (Ref. 76) gives expressions for the gra-
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vitational and the centrifugal torques, respectively:

and

_2 8'T = (Is-It).sin 2g 2 o

1_2
T c = _Uo(Is-lt).sin 2_"

w

where

Tg, Tc are the magnitudes of the instantaneous gravity-gradient

(centrifugal) torque vectors, u is the orbital angular velocity,
o

Is, It are the moment of inertia and the transverse moment of iner-

tia, respectively (the satellite is assumed to be symmetric about one

axis). _', 8" are the angles between the symmetry axis and the local

vertical (for Is<It) or the horizontal plane (for l_It).

Moreover, sn expression for the total torque on a spinning satellite

due to gravity-gradient and centrifugal force is given in term of

Eulerian angles:

2_2 "{-_'cos + (9+p) sinT = O(Is-It) y •

where the anges @ and • are the Eulerian angles representing the

deviation of the spin axis from its initial orientation, and Y and p

represent the orbit-plane orientation.

In his paper, P. F. Hultquist (Ref. 71) also gives an expression

for the gravitational torque acting on the satellite:

where r is the vector from the satellite's center of mass to dV, g is

the acceleration of gravity at Earth's surface, R is the earth's
e

radius, R is the vector from earth's center to dV, and the integration

is performed over the volume occupied by the satellite. Using this

98



4

relation both in elliptic and circular orbit cases, the angular momentum

imparted to the totally stabilized satellite over a year's time is

computed.

In his paper, C. D. Pengelley (Ref. 78) derives expressions for the

torque on a small rigid body due to an arbitrary gravitational field.

It is shown that the body can always be placed in an attitude for which

the resultant torque will be zero. The torque is expressed explicitly in

terms of direction cosines relative to the zero torque attitude and of

second partial derivatives of the gravity potential with respect to

suitable specified axes. As an example, the _eneral expression is reduced

for the case of a radially symmetric field.

In his paper, J. W. Diesel (Ref. 79) derives expressions for the

gravity-gradient torque which are extremely simple and involve only the

eigenvalues of the gravitational gradient tensor and the eigenvalues of

the body inertia tensor J with respect to a reference point 0. This

general theory is presented in order to bypass some difficulties (as,

e. g., of extraneous vehicle motion) which were initially connected with

the use of gravity-gradient phenomenon.

In his paper (Ref. 87) W. G. Hughes discusses the following torques

acting on a satellite: Drag torque, gravitational torque, magnetic torque,

torque caused by solar radiation pressure and meteoroid impact. From

the discussion one can see that for the majority of satellites, only the

gravitational torque is amenable to accurate calculation and expression

in a reasonable simple analytical form, suitable for use in overall

control system studies.
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(6.1223) Stabilization of Satellites:

In his paper (Ref. 80) W. T. Thomsonexamines the stability of

single-axis gyroscopes mounted on a vehicle in circular motion about

a central force field for several orientations of the spin vector

and output axis. Stability is investigated when the orientation of

the output axis is in the radial or tangential direction of the or-

bit and if it is fixed in inertial space. In the first case, stabi-

lity depends on the ratio of the spin angular velocity to the ve-

hicle angular velocity around the orbit and the ratio of the mo-

ments of inertia of the gyro wheel. In the second case, stability

depends on the moment-of-inertia ratio of the wheel, the angular

velocity of the vehicle around the orbit, and the desired orien-

tation of the spin velocity vector.

The paper by T. R. Kane and D. Sobala (Ref. 81) deals with motion,

in a circular orbit, of a satellite consisting of a rigid body, which

possesses an axis of rotational symmetry and carries, on this axis,

two particles that performs prescribed oscillations while the axis re-

mains nearly normal to the plane of the orbit. Stability conditions

are obtained by using a generalized kind of Floquet theory to study

the boundedness of the solutions of the differential equations governing

attitude angles.

In their paper, T. T. Thomson and Y. C. Fung (Ref. 82) consider the

stability of a spinning space station due to periodic motions of the

crew. Several modos of crew motion giving rise to instabilities are

studied.

In the paper by T. R. Kane and C. F. Wan_ (Ref. 83) a detailed
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exploration of a single-degree-of-freedom gyroscope fixed in rotating

satellite (with gimbal ring connected to the satellite by means of

a spring and damper) is carried out. The relationship of the motion

of the satellite, the physical characteristics of the gyroscope and

the spin rate of the rotor is discussed in detail.

In his paper E. E. Zajac (Ref. 86) uses the fact that for a satellite

in a circular orbit there exists an energy integral for motion relative

to an Earth pointing rotating reference frame. This integral is used

to obtain a set of orientation conditions.

In his paper (Ref. 88), W. G. Hughes discusses the use and advan-

tages of momentum exchange control actuators. Furthermore equations of

motion for wheel and gyro actuators have been derived. Finally he

discusses the mean feature of reaction wheel characteristics and

constructions.

In another paper (Ref. 89), W. C. Hugher discusses the stability

of a spinning body, nutation damping, and the choice of suitable moment

of inertia ratios. Further he discusses the spin rate reduction and

spin axis precession, due to external torques, and the possibilities

of active control of spin-axis attitude,

Various ways of providing passive damping are discussed in the

paper by N. E. Ives (Ref. 90). Furthermore an alternative method of

providing the damping, the semi-passive gyro damper, is discussed.

In his paper (Ref. 91), I. K. Abbott proposes first to treat atti-

tude control of communication satellites in general terms and then

to refer in more _etail to particular systems either of existing satellites

or of proposed satellites.
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The ESRO reports TR-I and TR-2 (Ref. 92) are dealt with analytical

expressions, which describe the attitude drift of a spin-stabilized

satellite controlled magnetically through a coil whose moment is

parallel to the spin axis.

(6.15) Expansion of _(_)

(6.131) Derivation and Rewriting of the Individual Terms:

/''"TO facilitate the integrations (_)dm and r-rs)Xg(_)dm occuring

in sections (6.14) and (6.15) an expansion of _(_) in a Taylor series

is recommendable. For this purpose instead of the complete formula for

the gravitational potential (Eq. (VI,2)) the simplified form

with

2

r r 5

a'rE'J 2

a: = -r.m E 6: = + 2 Y: = +36

(VI,14)

was used as the starting point. _ is the complementary angle of the

geographical latitude, viz.

_: = 90 ° - geogr, latitude (vI,15)

/

Fig. I

C: Center of mass

O: Center of the Earth

N, S: Poles
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From (VI,14) it follows immediately for _(_)

2

_(_) = "VU = _(a+3"_'Y'C°Sr r2 $);r - 2r_sin _.cos _)_
(vI,16)

(The symbols used and the coordinate system are discussed in (6.132)).

As is well-known, _(_) may now be expanded in the following way, under

the usual conditions:

(_s+_) (_s) " * _ ;o_).(FoVo_)s += _ ÷ s.(Fog)s +:7,(

1,°.., (VoVoFo_) + ...
+ _.t_ SOSOS) """ S

(VI,17)

with

S: = - r
s

(VI,18)

Taking account of only the first two terms in (VI,17) would yield the

certainly incorrect result that the gravitational field does not

exert any torque on a rotationally symmetric satellite if its axis of

symmetry is normal to the radius vector. For this reason further

approximations are considered here, in contrast to Rep. 15 of this

contract.

In the following we shall use the following abbreviations:

_2: = ($o_) SS: = (;o;o;) S4: = ('sososos)"* °"

" " " V4) * (VoVoVo_)AI (V ) A2 ' = (Fo A , =,S: = og S _S S 5,S S

(vI,19)

and for their scalar products:

a(1 ). = s.A1, s a(2): = $2.-A2, s a(5 )" = $5...A5, s

Thus (VI,17) reads:

(Vl,20)

(vi,17 a)
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The first three Ak, s
tensors read (R: = rs):

2 2 . 2
rr) + oos rr +

A1 ,s R 3_ R2

2

+_.sin %o.cos _(_r_+_Qer) + 2_y.sin _£o

R4 R 3

(VI,21 a)

2 _.rrr T *r Tr _ t#r

" _ 158-17y'c°s _)(Te -±oe -e ul-_ #) +A2,s = + (3a + R2

2
8y.cos _Tr_T

R6 e u± +

27 •sin 5o'cos_(4io_°+5_oi+4e#%° ) -
R5

6a-rrr 2y.sin _.cos _(24_rr_+24_r_r+25_grr) +

- R-_e - R5

2
10y.sin _r_ +

27(4.cos2_-9"sin2_)(_er_+_ _r) _ R4
+ R4

(VI,21 b)

2 2
By.sin _.cos _($krk+_kkr) + 4_.sin _.cos _e+%o_ +

+ R4 R3

+ R5

_ would already be somewhat cumbersome.
The calculation of AS, s = (V ° 2)s

The terms with B and y which are by a factor 102 smaller than the

a-terms were, therefore, neglected in the next step. This simplified

tensor is designated by Aso,s:

__a_5_rro_+5_ro_o;r+4_r_r_Ioi.e.oio e __£01_ _
= + R5_ _ _ k#A_O'S (VI,21 c)

_55_rrrr+5_rr +5_r r+5_o_rr }
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After the k-fold scalar multiplications with the Sk expressions of

0

the following kind are formed for the a(k ):

0 (h(_,IpsP)__(1) = h(1)_ + _ (1

. rh(_ I _2 += h(_) -
a(2) (h(;)p sp)_ + k (2 o (2)posPs°)el_ (VI,22)

o .2 o P _ * (h(_ I s + h(3)po s s s )ea(3 ) = (h(3)oS + h(5)poS s )s + k (5 op p_2 (#) p a .,*

where as usually S p is understood to be (_._P). The introduction of

the following tensors is straightforward:

_(p.) ('p.) ,p "="0 . o _.p _'I;I : = h!p. I _.p(1): = h(1)p= h(2)" = h(2)p o [5 op

(2) = = n(2)p _ H(3)' = h(5)p _ (VI,2})

_I;I: = h!_'l(,5 pox_P°_

Because of

_2 S2..I, sp _._p sPs o $2" _op

41.

the following expressions result for the a(k):

a(1) = _" (I)I + h(1)oe

" " "(_) [+ )o
a(2 ) = $2-. ( )oI + (n(2)o

"(3) = s3"" (3)o_+H(3) '"(3)o _ "(3 )o

sPs°s _

(VI,25)
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and

a(1) = _'" (I) + *'(I) )

,I ""2) = s2"" (2)+ _'(2o = s2 "_(2)

3) = s3"'" (3)+ _'(3 = s3" 3)

(VI,25 a)

respectively, with the abbreviations:

I _ O -b:(U _(I_) T(1): I_'(I : = _'(1) = h(1)

I I .o._'(_. = h(_ _+_'(_) _ := h(2)oZ_'(2 " (2 o "(2) (2)

_(_) _'(_'I o_ + "(_) T • o T + _(o )oT(3)" -- "(3 o H(3) (3) - (h(3)o 3)

(vz,26)

The quantities

- . T + o(_)-
B(k)" = (k) _'(k)°e_

(VI,27)

need, of course, not to agree with the Ak, s

simpler than these.

58-5Y cos _)I_(_) = + _(_ +
R5 R2

I 1_p-17y.cos 2 8y(_tr! - I___(3a + _)_r +
1 = R3 R2

2y,4*r __ e_sin _).sin
= + _[_e cum _ +

and are, generally speaking,

sin _.cos _)_9 (VI,28)

and

_(2)

_(r)

(2)

{6 ( _P-7y'c°s2_);r + _$esin e.cos e}o_= -_ a + R2

cos2_)_

2

= - __(3e + I_#-17y + 15a + 7
• 1___( 1_pZ17Y.cos _)

R 2 R4 R2

. 98y_r_ . 8y_kk 2 2 _ 2
R5e s_n _.cos _ + R4 sin _-cos _ + R4(4

-rr 29)e - (VI,

•cos _ - 5.sin2_)_ _

106



,  oos

8_l_r_ 2R6 cos _ + e_Xsin _.cosR(2 = +

and

5 r§o _(3) -" R_L- -

_Ir) 15a. " *r 7_rrr)3) = + --_-_(3_:oe -

2
•COS q)- 5.sin2_)_ r_ +

(vz,29)

(vz,30)

In calculating the torques expressions of the form

_X_(k)dm

occur in the sections (6.14) and (6.15), which can be rewritten in the

following way in order to facilitate integration:

R(k ) and Sk are tensors of the k-th rank;

therefore, scalar Quantities:

the k-fold scalar products are,

_(_) _ _(_) (.) - -(.)
(1): .... (1), a(2): = $2"'R(2), I_I " ._(_)(v_31): = s3"" _(3) '

The (k+1)-th-rank tensors _(k) are of the form

_(k) = _(k-1) °_

.@

D(k_1 ) being (k-1)-th-rmnk tensors. Putting:

. ° _(s 2. =. s3.. •° "D(3-1 ) " 132' 4-1) =: _3 (vz,32)

we have, because of

Sk = SOSk_ 1 (vz,33)
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by way of example:

_3"''T*(3) = (;o_2) "'" ({2 °_) = _'($2 " "_2)°Z" = #2_.Z = _2_ (vi,34)

•_ ,4p .Ib

Since analogous relations hold for all k, because of sxs = o only the

_(_ I "* "*remaining terms with 1,(k must be taken into account in sxa(k):

_*_'(k) Sx(_(_)t xt_(_) _(_)_ '%(_))x_-- (k) _) =-;_ (k)--'ix( (k)_ = ts (k) (vi,35)

As in (VI,34) it is now shown that

= " ' sa(2) = $3 *'(2)' )sa(1) ) -. s_(3 = S4 .... (3 (VI,36)

holds. Thus, we obtain

sxa(1 ) = (S 2. )xel_

.Ib

sxa(2 ) = (S3"-R(2))xe_.
(VI,37)

* * " ._( ))x$
sxa(3) = (S4" "(3)

_(#) (VI,37) are
Since the tensors B(k ) in (VI,25 a) and (k) in constant

quantities they can be placed in front of the _...dm-integrals. Since

a symbolic way of denotation was used throughout the paper all equations

written down up to now are valid in all coordinate systems, as, e. g.,

in the system of the main satellite axes. Thus all integrations /...dm

can be reduced to integrations_kdm in, e. g., the system of main axes.

(6.132) Hints to the Symbols Used:

(6.1321) The coordinate system:

Throughout (6.131) spherical coordinates having the earth's center

as origin are used:
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r: along a radius from O: O_r_+ oo

_: along a meridian from N to S: 0°4 _180 °

X: along a circle of latitude counted from any

fixed point: 0°_ X_ 360 ° .

(VI,38)

Accordingly, the basis vectors used have the following directions:

_r
er, e : direction of radius vector from O

_ , _: direction of meridian to south

ek, e : direction of circle of latitude to east or west,

depending on the manner of counting.

(VI,39)

Since the indices r, _, X denote the spherical coordinates it is,

of course, not alloyed to sum over them. Instead of this, summation is,

for example, carried out over p, c, x, _ according to the Einstein

convention.

The basis vectors ep, e

products

are generally not normalized; their scalar

(_p _0_
e -e ) = :gpO = :g o (= 6 )

(vz,4o)

are, as is well-known, the components of the unit tensor I. For (VI,39):

(_r._r) : (_r._r) : 1

* 2 _*_ *_ -2
(e-e) : r ke .e ) = T (VI,40 a)

(- 2 2 (_X._X) r-2 sin_2ek.$X) = r .sin _ = •

Hence the following unit vectors are obtained_om (VI,39):

er = e , --ere= re , r.sin _ek = re sin _ (VI,39 a)
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The transformation to other coordinate systems {x '#} is performed by: •

_p _ _x p _,a ° ax ,c
e - _' (VI,41)

8x,C p ax p c

(6.1322) Symbolics:

The "_" sign introduced in (VI,16) designates, of course,

F" = _ _'_--
ax_

In (VI,17) the "o" sign is used for the first time to denote a

tensorial product: from _P and _o the basis tensor

tPo_a: :_p°

(VI,42)

(vi,43)

is formed, for example. Thus we have, e. g.,(product rule!)

_x axp ,p ,° ,o°_,+;Po_,_, =

=_ o - _, )o(g +;" ;+g" _r;+,P [_ + _P°(g_,p,c _ ,p ,_o a

(VI,44 a)

= _'cP_({g_(-aF-_F'_Iopl_a+_(_p,c+ [_acp" a_ ). g.,a _p+a

+ g_ w_ _ + g_ c}J,P °"+ g1_,(5 P ,P,

Of course, nobody will calculate in this way, but one will first calculate

O_) : _Po( _ ) = _Po(g p e
,P ,P + gP_ p) : A °_'P (VI,44 b), p (5

and then
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with

ep,a" : ,a -,xa e (VI,45)

and

_po x# 1" : : g "_(g,_,o+g_o,_,gpo,_) (VI,45 a)

In (VI,17) also the n-fold scalar product appears for the first time:

(_o_o_o_)...(eofog)'_ -," .4. : (_O_O_). "_- "_ " :: .(fog)(_._) : (_o_).(_)(t._)(d.e)

: (_._)(_._)([._)_ (VI,46)

as, e. g.,

_3""_(3) : (s e;=eY)...(TO°"";p_..) : s p_a_"_=_..e

: S T_X_ea.; : S TP_X_ (VI,46 a)

(where the sequence of the indices with S is relevant!) If a tensor

equation is needed in the components of an arbitrary coordinate system

one has to multiply simply with the corresponding basis tensor, e. g.:

R 1 2 _ (_2511 ";5 ";1 _'25= R .... ) : (((_._2) ) )._I 115 = ( I ) .... _ =

•-2 (VI,47)
= e .(_'5.(_'1 .(;I ._)))

a fact which enables us to calculate without reference to a special

coordinate system.

(6.14) The Equations of Motion in the Earth' SEstem

The "earth, system" is in the following understood to be the system

of refernce of the unrotating earth; one may, therefore, consider the

system to be an inertial system, in very good approximation. The
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equations of motion read

-mb s = K: =

_s.Ut + _tX_s._t = MS: = r-rs)xdK

(vi,48a)

(VI,48 b)

with

bs: - j : _- .
dt_ s

(vi,49)

We consider here only gravitational forces. Thus we have:

-b

dM = (_-_)x_(_)dm
s S

(VI,50 a)

(vl,5ob)

or, because of (VI,17 a) and (VI,18):

d_ = _(_'s+_')dm = (_(_s)+_i _T_'(k)_ dm

dMs = _x_(_s)dm + _I _1_X_(k)dm

(VI,51 a)

(vi,51b)

Using (Vl,25 a) we obtain:

" I" " __sdm" _(d_ = _(_s)dm + _dm.B(1 ) +-_S2dm..B(2 ) + "" 5) + "'"

d_ s s'dmx_(_s) + (_'2dm.=(_))x_ "-- _'(I) + +

+ dm"..,,(3) + ...

(VI,52 a)

(vi,52b)

Because of _dm = _s_dm in both equations (VI,52) the term f_dm cancels°

Therefore, the final form of the equations of motion is:

_m(_ )) _ (" " )* _(T ) + .._ + S • .B + ..
= ( "(3) "bs s 2 2 5 (vi,53a)

112



Q

¥

• I-Ib "I_ -Ib
_s'_t + utXJs'Ut (_2 _(IA ._(IA))x_ += +½ "(2)

+ ...+ _4..'_,(5)

where _2' etc., are to designate _o_)dm from now onwards.

The equations (VI,53) are valid in all coordinate systems; the

(vz,53 b)

system of reference is, of course, the earth' system defined above.

As usually, the transition to components is brought about by scalar

multiplication with the corresponding basis vectors.

The rotation vector _t contains the total rotational motion of

the satellite with respect to the earth' system; its direction is such

that for a point at rest in the satellite we have

v = v s + _tx(_-_s ) (VI,54)

where _ is the velocity in the earth' system.

in

(6.15) The Equations of Motio_Orbit Systems

Some people prefer the representation of the equations of motion in

a system of reference whose origin is the satellite's center of mass and

whose rotational motion U_B with respect to the earth' system is fixed

in a certain manner, e. g. such that the first of the three Cartesian

unit vectors shows into the direction of _ (i. e., from 0 to C, in Fig. I)
S

whereas the second one represents the normal to the instantaneous orbital

plane of the center of mass. Such a system of reference will be termed

"orbit system", in the following. Let _ be an arbitrary vector, a its

time derivative in the earth' system and _ in the orbit system. Then we

have :
• I.

a = a + uBxa (VI,55)
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and, particularly, in analogy to (VI,54):

O O -@ -b

V = V s + UBXS
(vi,56)

for a point at rest in the orbit system• The rotation vector

_S: = _t - U_B (VI,57)

then describesthe rotation of the satellite with respect to the

orbit system•

The equations of motion now read:

mb s = K': =

. . ,_
•u + x • : = J{xd 'Js s s s s s

(VI,58 a)

(vl,5s b)

,@

where dK' is the force acting on dm in the orbit system and b' is the
8

acceleration of the center of mass, again the orbit system. On account

of the special choice of this system of reference we have

_, = _" (v_,59)
S

The derivation of M' can be performed from (VI,48 b) via (VI,57) and
S

(vI,55)

= M' + J " +_ _s s ss s Bx ) + " _B) + _ xJ •
(VI,60 a)

and

M' +J " + J .u
s s B s s -x_ _ -; u-_-u_X_su_+ US = S S

(VI,60 b)
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respectively. Because of

%2
and

S B x = S S =

the left side may be transformed to:

" _ 2(2 _) Bdm sX_ "uBM' + x ._ = _' - 23 *
s se s 2

(Vl,60 c)

(Vl,60 d)

(VI, 60 e)

such that:

_& = _,, - _s.UB- UBXJ.uB + 2Us,S2.uB (VI,61)

Thanks to (VI,58), (VI,59), (VI,60) and (VI,61) the equations of

motion read, therefore:

K' = O

j. 4,

4_ .._ "_ .oh .@_ .@, "@ 4,. .,b ._ .e. %Js'Us + _sxJs "_s - 2UsXS2"UB = Ms - Js'uB - UBXJs"

(VI,62 a)

(VI,62 b)

with

4

M
S

(_2._(_),. I - t(,l)x_" I " z(_),.= ,_(1))xe_ + _(85'',_(2 + _(S4"''_(3))xe#+ -.,
(vI,53b)

4

u B is given or is yielded by integrating (VI,55 a), i. e., from a

of _s(t), _s(t), {s(9). (VI,62 b) can, therefore, be usedknowledge

to determine _s(t). The calculation of _t(t) from (VI,55 b) and of <(t)

from

" * ° (v_,_7)
u s = u t - u B

seems to be simpler.
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(6.2) On the solution of the hear2 asymmetric gyroscope, using the

properties of the Lie operator

by F.Cap and A.Schett

We consider an asymmetric gyroscope with several torque producing

forces. A spinning satellite is essentially such a gyroscope; the

torque may result in a change in satellite orientation that affects

the thermal balance, the operation of solar cells and various scien-

tific measurements.

By means of an operator we can represent the solution of the

heavy asymmetric gyroscope such, that the contributions of the diffe-

rent torques appear separately. In other words, using a splitting up

procedure of the afore-mentioned operator we can represent the solu-

tion in the form, e.g.,:

t

^ 7-u _ Ugloba I + Mif (T, Mi, u) d_ +
G=O 1

symmet ri c o
forcefree

t

+ A f_(_, Mi, u) d_

o

where u indicates that this function can sometimes be represented in

a global form.

The torques M i (i = 1,2,3...) appearing in the integral terms

usually differ by their order of magnitude. For a given degree of accu-

racy, therefore, the number of summation terms u to be computed de-

pends on the integral considered. The afore-mentioned solution repre-

sentation renders it possible to compute the single integral terms

irrespective of the other integral terms.

Especially we shall present the solution of the equation descri-

bing the heavy asymmetric gyroscope in the forms:
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(6.211) Solution = Solution (heavy, symmetric) + contributions from

asymmetry.

(6.212) Solution = Solution (symmetric, forcefree) + contributions

from asymmetry and forces.

The l-st term is exactly known. The 2-nd term can be split up into

several additive integral terms:

a term containing the contributions of asymmetry; this term vanishes

if the satellite (gyroscope) is symmetric.

additive integral terms containing the torques Mi(i=1,2,... )

2__ Mifa(_, Mi, u)d_

i.e., these terms vanish if M i = 0

(6.215) Solution = Solution (asymmetric, forcefree) + contributions

from forces.

As to the effectiveness of the a_rementioned solution representations

one can generally say, that it is advantageous to put the main contri-

bution of the solution in the l-st term and perturbations in the re-

maining terms.

(6.21) Solution of the equation describing the heavy asymmetric gyro-

sco__q£2_.

Using a reference frame (Xl, X2, XS) fixed with respect to the body

the equation of the heavy asymmetric gyroscope reads

M I = 11_I + (I3 - 12) u2u3

_2 = 12_2 + (11 - 15) UlU5 (vl,61)

M 5 = 15_5 + (I2 - 1I) u2uI
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where 1I, 12, 15 are the moments of inertia, Ul, u2, u 3 are the angu-

lar velocities, u1' u2' u5 are the angular accelerations and MI, M2,

M 3 are the torques in the reference frame (1,2,3). In Eq.(VI,61) we

have substituted XI, X 2, X 3 by I, 2, 5.

Using the well-known relations

U I = & sin 7 sin _ + _ cos 7

u 2 = & cos 7 sin _ - _ sin 7 (VI,62)

u5 = & cos _ +

where _, _, ? are the Eulerian angles defined as follows

z axis x' axis x' axis

5 axis x axis I axis

where x, y, z are the axis fixed with respect to the space, x' indi-

cates the nodal line of the two planes (xy) and (12).

Differentiating u i (i=1,2,3) in Eq.(VI,62) with respect to t

(time) and substituting the se quantities into Eq.(VI,61) we obtain the

following equations

"& + &_'h11 + &l_h12 +'[3h15 + _'h14 + &2h15 + _&h16 + &_'h17 +

+ (VI ,65)

"_ + "&h21 + _'&h22 + &_h25 + _'h24 + &2h25 + _&h26 + &_'h27 +

+ [3}h2a= (VI,64)

"_ + "&h31 + _zl_h32 + &_h34 + &IBh35 + _2h26 = S3(IB,y,c_)(VI,65 )

where
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hiJ = hij( _,_,_); i,j = 1,2,...

si = si(_,_,_); i = 1,2,3

h11 = sin 7

hl 2 = sin

h15 = sinysinp

-I

h4

h21 = - sin 7

h22 = sin

h2_ = - sin ?

-h27= =2 sin

M2 1

.$2 -- --= I2 c

hl 5 = _I sin7

h16 = -al sin

cos_Am/
h17 = al sin ?

h18 = " sin

13-12
_I = 1 I

h24 = sin 7

h25 = . a2si n _ cos

_a 2
h26 = - sin 7

cos_q@__/_2
h28 = " sin 7

a2 = 12

h_ I = cos

cos 7 sin2_

h3_ = ussin ?

h55 = _assin2y sin

h3 2 = - sin

2

h54 = _5co s 7 sin

h36 = -uscos 7 sin 7

12-11

_3 = 13

(VI,66)

(VI,67)

(vl,6a)

(VI,69)

(vI,7O)

(v1,71 )
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0

i obtains
q_6 = " _ i_1,64j one

iBse_ing "_ from _(_" CV_'65j into Eq. + B2q26

q22

'I

I_O

= 0



" Substituting _"in Eq.(VI,65) by Eq.(VI,72) we obtain

.2 _2q33 _%5"_ + &Pq31 + a q32 + + &_q34 + + S2q36 + slq57 +

+ S3q58 = 0 (VI,76)

q51 = h52 + h54 + h3,5 - q12h51 _

q32 = h55 - q14h31

q53 = h36

q54 = -qllh51

Eqs.(VI,72), (VI,74), (VI,76) read

q55 = -ql 3_51

q56 = -q15h51

q57 = -q16h51

q58 = -i

(VI,77)

.2
"& + &7q11 + &_q12 + _7q15 + _ q14 + S2q15 + $1q16 = 0 (VI,78)

•o o2

+ _'&q21 + &_q22 + _'q25 + = q24 + Slq25 + 82q26 = 0 (VI ,79)

.2 _2q55"7 + &_lq51 + _ q52 + + &Tq5 _, + 137q55 + S2q56 +

+ $iq57 + Ssq58 = 0 (VI ,80)

qij = qij (_'_'7);

S i = Si(P,¢,7);

(VI ,81 )

Eqs.(VI,78), (VI,79), (VI,80) can be written in the form

= f1(&,_, _,_, _, _)

= f2(&,_, _,_, #, _)

y = f3(&,_, _,_, _, _)

(VI ,82)

For the forcefree, symmetric gyroscope, i.e., _5 = O,

8i = 0 (i = 1,2,5) (see Eqs.(VI,67), (VI,69), (VI,71)), Eq.(VI,82)

reads
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G

_"= f2ffs(_,_, _, _, 13,_)

y = f3ffs(_,_, _, =, 13,_)

(VI,85)

where fiffs (i = 1,2,3) indicates forcefree s_,ymmetric

For the forcefree asymmetric gyroscope i.e., S i = O; (i = I ,2,5)

(see Eqs.(VI,67), (VI,69), (VI,71)), Eq.(VI,82) reads

_ f1_fa(a,_, _, _, 13,_)

_ f2f_a(_,_, _, _, 13,_)

}"--f3ffa(_,_, _, _, 13,_)

(vi,84)

where fiffa indicates the forcefree asymmetric case.

For the symmetric heavy gyroscope, i.e., _5 = 0 (see Eq.(VI,71)),

Eq.(VI,82) reads

_" = flsh (_, _, _, _, _, 7)

= f2sh (&, _, _, _, 13, I')

•_ = f3sh(_,_, _, _, 13,_)

(VI,85)

Eq.(VI,82) can be written in the form

_'1: &l : co2

7'2 : &2 = fl

Z3: _I = 132

Z4:132 = f2

{55:";'1 = ")'2

Z6:_2 = f.5

(w,86)

The sign ":" indicates that &l m ZI' e.g.

For domains, where fi (i = 1,2,5) are holomorphic the formal solution

of Eq.(VI,86) reads (see Ref.1,16)

tD
Zi = e z.l (VI,87)

where
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a a a a a a
+ + -- + f2'a-_4 + 72"_z5 f3D' 2" Tz +

(VI,88)

(6.211) Representation of the solution S in the form S = S
symmetric,

+ contributions from asymmetry.
heavy

Starting from Eq.(VI,82) we obtain for the operator D (see Ref.1)

a a a a a a

+ fla'_z 2 + f2a" + f3a'_ 6
(vz,89)

where fia (i = 1,2,3) indicate the contribution from asymmetry and

fish (i = 1,2,3) indicates the s_ymmetric heavy case.

We write now the operator D in the form

D = D I + D 2

where

(VI,90)

and D I is defined by (VI,89). The solution Eq.(VI,87) reads in this

case

Z i = etDz i = e Z i = e Zi + 7"- (t-_) D2D z i (VI,91)
O _!

o

The subscript a indicates that after applying D2D on zi, zi has to be

replaced by etD1zi . In Eq.(VI,91) the operator D I is the operator for

the symmetric heavy gyroscope.

The solution repr_e_ation is recommandable, if the deviations

from the symmetric gyroscope are small. In this case only few terms
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of the sum in Eq.(VI,91) have to be taken into account. For the

evaluation of the integral appearing in Eq.(VI,91) suitable methods

are already developed (see Ref.2) ;in these works also the problems

of error estimation is treated-

Moreover we will use another method for solving Eq.(VI,61) as

proposed by GROEBNER (see Ref.94)- For that we put

12 - 11

15

(vi,92)

where _ is a parameter. Using this parameter we obtain

fia-- kfi_a (i = I ,2,5) and the operator D reads

D _ D I + D 2 -- D I + AD2' where the operator _2 reads

_+ f_. _

z4

(vi,95)

where D I and D 2 are given by Eq.(VI,89) and Eq.(VI,90), respectively.

With (VI,87) the solution reads

t(DI+D2) t(DI+_D ) (t,zi) --
= e z. = e z. =

Zi l l j=o

_=I (VI ,94)go(t,zi) + _0gj

tD I

where go(t ,zi) = e zi and gj+1

recurrence formula (see Ref.94)

can be calculated by the

gj+l(t,zi) = _t [D2gj(_,zi ) d_zi-_ go(t-x,zi )
0

following

(v1,95)

The subscript zi "-_ go(t-_'zi ) indicates that after applying the

a- z i has to be replaced by go(t-_,zi )"
operator D2 on g j,
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The proof of formula (VI,94) and formula (VI,95) is given in the

work by GROEBNER (see Ref.94). DI is the operator for the heavy sym-

metric gyroscope.

Since the quantity _de_ned by Eq.(VI,95) is usually small the factor

kj (j = 1,2,5...) influences the convergence in a favorable way.

(6.212) Representation of the solution S of Eq.(VI,61) in the form

S _ Ssymmetric, forcefree + contributions from asymmetry and forces.

In this case we write the operator D in the form

-- + +

D = _2"azI- + P2"_z3- + 1'2"'_z5 + flsff"_z 2 + f2sff'az 4 fSsff'-_6

_z 4 f a a i_ ++ flh" + f2h" + 5h'az6 + fla'_ + f2a'az--_

(vi,96)
+ fSa-_z 6

where fib (i = I ,2,3) indicate the contribution

force (heavy), fisff

now

of the external

and f. (i = 1,2,3) are explained above. We put
la

D = D I + Dha , where

+ fSh'_z6 + fl -- + f2a" +Dah = flh._z2 + f2h-_z 4 a'az 2

+ fSaO_-_z6 (VI,97)

and D 1 is defined by Eq.(VI,96). Solution (VI,87) reads in our case

tD t (DI+Dha ) tD I
Z. = e z. = e z. = e Z. +

1 1 1 1

t

rs,,t i]a ! Dha D_z dx

o o

(VI,98)
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D 1 is the operator for the symmetric forcefree gyroscope,

tD I
i.e., e z is the solution of the symmetric forcefree gyroscope.

i

Taking account of the different torque acting on the gyros-

cope M I, M 2 and M 3 in Eq.(VI,61) reads

MI =_i M1i; M2 =_i M2i; M5 = _i Msi' where i=I ,2,... (VI,99)

indicates the different torques.

Considering a satellite considerable torques are, e.g.:

the gravitational torque, the drag torque, the torque caused by

radiation and the magnetic torques. Splitting off the operator

Dah = Da + Dh, where

= + f2a" + fSa" 6
(VI ,I 00)

8 _ 8

Dh = flh'_z2 + f2h'0-_4 + f3h.-_z 6

D h again can be written in the form _l Dlh (1=1 ,2,3...) = Dh,

where

and

f11h -- $21q25; f21h = $Iiq25 + $21q26; f31h = $Ilq37 +

+ S31qs8

Eq.(VI,98) has now the form

tD I
Z. = e
i

t

zio tJ
O

O
O

(t-x)a _DaDaZi _
dx +

! hlDmZ B
aT

(VI,IOS)

(VI,102)

(VI,I03)

(VI ,I04)
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The subscript b indicates, that after applying the operator, z has
1

to be replaced by etDlzi . The last integral term in Eq.(VI,104)

vanishes if Mi(i = 1,2,5) is equal to zero. The solution representa-

tion Eq.(VI,104) enables us to evaluate the single integral terms

numerically independently from the other terms.

(6.215) Representation of the solution S of Eq.(VI,61) in the form

S = S + contributions from forces.
asymmetric, forcefree

In this case we write the operator D in the form

D = D1aff + Dh, where the operator D1aff reads

f _ 0 0
+ fSsff'_6 + la'0z2 + f2a"_z4 + f}a'-_z 6

(vI,105)

Oh= flh'_--_+ f2h'0-_z_4+ fSh'_--_6
(vr,106)

The solution (VI,87) reads in this case

tD t (D1aff+Dh) tD1aff
Z. = e z. = e z. = e z. +
1 i 1 1

t

+ tS
0

0

! hDZi
aT (VI,107)

D1aff is the operator for the asymmetric forcefree gyroscope.

tD1 aff

Putting e zi=_1 and splitting off the operator D1aff in the form

D1aff = Dlf f + kD2_, where D_2 is defined by (VI,95) and D1f f is de-

fined by Eq.(VI,105), we obtain the solution in the form
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t (DIff+AD2) _ kDgj (t ,zi) (VI ,108)tDlaff = e z. = =
Zil = e zi i j=o

O0

go(t,zi ) +_ kJgj(t,zi) , where go is given by the relation
j=]

t

tD1ff and gj (t ) = I _2gj(_,zi)i d_
go(t,zi) = e zI +I 'zi zi__go(t,zi )

O

(VI,109)

With Eq.(VI,108), Eq.(VI,I09) reads

t

21iDJzl= e z. + _ (t,zi) + _! d_
Zi I j=1 o o a

(VI,110)

is the operator for the forcefree symmetric gyroscope.
where D1f f

If several external forces are present we obtain in analogy to

Eq.(VI,IO4) the solution Eq.(VI,110) in the form

tDlf f co Xjgj( t _ (t-T DhlD zi aZi = e + _ ,zi ) + _!
j=1 o o

d_

(VI,111)

This representation is advantageous insofar as it contains several

additive integral terms, which can be computed separately. The number

of summation terms _ = 0,1,2,... depends on the order of magnitude of

the torque appearing in the operators Dhl (1 = 1,2, ..... ). For the

numerical evaluation of the integral terms we refer to the work by

H.KNAPP (see Ref.2, e.g.).

Concerning the stability of the solution of Eq.(VI,61) we refer

to the books by KLEIN F. and SOMMERFELD A. (see Ref.45) and by

GRAMMEL R. (see Ref.96), in which this problem is treated in detail.
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Appendix

In the book, "The General Problem of the Motion of Coupled

Rigid Bodies About a Fixed Point", by E.Leimanis, Springer Tracts

in Natural Philosophy, Vol.7, 1965, p.133,the Euler Poisson equations

of motion are solved by Lie Series. These equations read

llUI + (I2 - Is)u2u3 = mg(_zo - 7yo)

12_2 + (I_ - Z3)u_u3 = mg(_x° - azo)

13u3 + (12 - ll)UlU3 = mg(ayo - _Xo)

(VI,112)

= _u 3 - 7u2

= 7u I - _u 3

= _u2 - _uI

(VI,113)

where I. are the moments of inertia, u. are the angular velocities,
i i

1,2,5 indicate the axis fixed with respect to the body, m is the mass

of the body, gm is the weight of the body, r
o = (Xo' Yo' Zo) indicates

the position of the mass center. (x, y, z) denote the reference frame

fixed with respect to the body, _, _, 7 are the direction cosines of

a fixed axis (Z axis of a space fixed reference frame, e.g.) with re-

spect to x, y, z. E.Leimanis represents the solution of Eqs.(VI,112)

tD
and (VI,113) in the form Zi = e zi, where ZI = Ul, Z2 = u2, Z3 = u3,

Z4 = _, Z5 = _, Z6 = 7 and the Lie operator D reads

D = (_z° - Zyo) I2-I3 3] _ m._[( _z o )11 u2u _ + 12 7Xo -

1 [ J°11-19 _ mg (_Yo - _Xo) UlU5 _ +- I---_-- ulu3 _ + 13 13

_ _u3) _ (_u2 )+ (_u3 - 7u2)_ + (7uI _-_+ - _Ul -_7
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As shownin this paper we have the Euler equation co_taining not

only a term for the gravitational torque, but also several other

terms corresponding to other torques (drag torque, centrifugal

torque, etc.). Furthermore, as far as the solution representation

is concerned experience (see Ref.2, e.g.) has shown, that a repre-

sentation as it was given by E.Leimanis is not recommandablefor
tD

numerical computation. A rearrangement of the series e zi by
t(DI+D2) = etD1z. + R, as it wassplitting off in the form e zi i

done in this report, influences the numerical evaluation in a favo-

rable way, if, e.g., etD1zi>_ R.
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(6.3) The Integration of the Equations of Motions

(6.51) Transition to component representation

(6.311) Derivation of the general formulas:

(6.3111) The Eulerian matrix:

The so-called Eulerian angles are an appropriate means of describing

the rotation of two rectangular normalized trihedrals with respect to one

another. Since the transformation matrix appearing in this case -the

Eulerian matrix - will play a crucial part in the following we shall

summarize here the most important formulas:

.I

.J

N:

I

(_'12)/(i1'i2)

System I: i4, i_, i_

System II: ii, i2, i}

Fig. 2

Now we have :

i' = a i i = a i'
p po o p op o

(VI,114 a)

a a = 5
px _ p_ (VI,114 b)
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with:

all = +a_-abc a12 = -ac-ab_ a13 = +ab

a21 = +a_+abc a22 = -ac+ab_ a23 = -ab

a31 = +bc a32 = +b_ a33 = +b

f

(vi,115)

and the following _bbreviations:

a: = sin a b: = sin _ c: = sin y
(VI,116)

_: = cos _ _: = cos _ _: = cos ¥

Since the a are representing transformations between Cartesian coordinate
po

systems there holds:

eP
ape r = a pcr= ap = o;

for such reason in the following there hav been no regar_ to the position

of the indices, in contrast to b and c in (VI,121). Where the summation
po Po

convention it demands, the index concerned is thought to be lifted.

If the vector u of the rotation of the two systems with respect to one

another iS chosen such that the relation

a = a + uxa _v±,_)

Z"

•@. .

holds for arbitrary vectors, where a is the time derivative in System I,

we also have:

•. (a +ab,r)iI + + =

= (cp+bc&)i 1 + (-c_+b?A)i 2 + (_+;_)i 3

(VI,118)

Besides, it follows from (VI,117)

u = u + uxu = u (VI,119)

i.e., it is irrelevant in which of the two systems of reference u is

differentiated.
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. " From now on the system II, i.e., I' is identified with the

system of main axes. In the following, the "system of main axes" is

understood to be that Cartesian system whose instantaneous coordinate

lines are parallel to the main axes of inertia of the satellite.

(6.3112) Earth' system: Fixation of the Eulerian angles:

The Eulerian matrix treated in (6.3111) connects two Cartesian systems.

It is quite obvious that the tensor components in Section (6.13) were

given in spherical coordinates; it is, therefore, necessary to transform

to Cartesian coordinates. Viz., the introduction of the following system

is expedient:

i_: from 0 to the origin of the X counting in the equatorial

plane; i. e., to _ = 90 ° , _ = 0°

i_: from 0 to _ = 90 ° , _ = 90 ° (VI,12o)

i_: from 0 to the north pole; i. e., _ = 0°, _ not determined.

Then we have :

e = e = (i].ccs X + "sin k .sin _ + t cos •
r

• _ .cos X + i "sin X .r.cos _ - i .r'sin
e = =

• 2 2 _k * *
e k = r sin _.e : (-il.sin k + i_'cos X).r.sin

and

= .cos X-sin _ + r(_cos _.cos _ - e sin _.sin X)

= Sr.sin X-sin _ + r(eecos 9.sin X + e sin 9.cos X)

i_ = e cos _ - re'sin

respectively, or, in a compact way

e = b ' SP = bP_i ' _' = c
p p o c_ p po e

(VI,121 a)

(VI,121 b)

(VI,121)
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On integration of (VI,53 a,b) the Eulerian angles and the coordinates

of the center of mass are obtained as functions of time. With

i = a c e
p _p l_a

(VI,122)

the satellite's position relative to the spherical coordinate trihedral

presented in (VI,39) is given in a very illustrative manner.

(6.3113) Orbit system: Fixation of Eulerian Angles:

Cartesian coordinates are somehow introduced in the orbit system,

e. g. in a way mentioned at the beginning of section (6.15). %';eshall

use here another system, i.e., *)

: = +re sin _ : = -re _ : = +e

The instantaneous position of the satellite is then obtained either

immediately from Fig. 2 or with the held of

p_r .Nip* = +a_ - a2p'r_ _ + a_pre sin _ (VI,126)

*) If the unit vectors defined in this way are regarded as the System II

(change of designation! _'---_) and those defined according to (VI, 120)

as the System I of Fig. 2, the transformation matrix is obtained from

(VI,115) with:

a: = 900 + k 6: = +_ Y: = 0

which, of course, lesds to (VI,121). With the help of (VI,118) we

immediately obtain _B:

_B = +_(_rc°s _ - re_sln _) + r_e sin _ =

: +_('_1''sin _ + _-cos _) + X_

where the _' again represent (VI,120), i. e., System II!
P

(VI,124)

(VI, 125)
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where, in order to distinguish from the transformation coefficients

(VI,122) of the earth's system we write here a' instead of apo aspo
was the case in (VI,114) and (VI,115).

" .i + _x_ .5 = _ in the System of Main Axes:(6.},114) Representation of Js s

This term occurs in (VI,48 b) with u = ut and in (VI,62 b) with

u = u . Because of
s

j22 i}Js jpO_p_ j11e }32= = 111 + _22 + J } (VI,127)

P
= (_+bca+$c&_+b_&_-c_#)_ I +

+ 2 +

+ 3

(VI,128)

and

_" Np_N = i
P

immediately the well-known system

j11dl + (J3"5.j22)u2u3 = N 1

j22{2 + (j11.j33)ulu3 = N 2

2 N 3j33_.3 + (j22_j11)ulu =

(VI,129)

or

a _ Np
_P +Buu -

P jPP

(VI,129 a)

with

j33 _ j22 jll _ j33 j22 _ j11

BI: - jll B2: - j22 B3: - j33
(VI,13o)

results. Solving with respect to the second-time derivatives yields:

a. -'_c_(BI+B2)& 2 'b= + "_'(BlC2-B2 s2-] )&_ - c_(BI+B2)&'{' +

1 c2_B2_2 .. NleC N2 _c
+ "_'(I+B 1 )I3Y + jll--'--_ + j22-"-_

(VI, 131 a)
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¢

= +bS(B2c2-Bl_2)& 2 + _c_(BI+B2)&_ + b(B2c2-Bl_2-1)&_ +

N 1 _ N2

+ o_(BI+B2)# + j--_.c j22.0

(VI, 151 b)

= +c_((BI+B2)b2-B3b2) &2 + _(1+(B2_2-B1c2)b2+B3(c2-_2)b2)'&_ + (VI,151 c)

+ _c_(BI+B2)&_ B}c_2 S -2 2_1 N3 b, N1 N2÷ + - -_.c+---_'_)
+_(B2c -sl c )_¢ ;33 b ;11 _22

(6.5115) Earth's system: Treatment of the Remaining Terms:

It remains to give the components of Ms, i. e., the right-hand side

of (VI,55 b) in the system of main axes. For this purpose we give the

following summarizing review:

_(_) (_)_P _(_I : R(_)_P° _(_) : R(_)_ _°" (VZ,152)(1) : R _ "(2 oo "(3) _

_4 f ; fsas_sYs6dm = :S_SY6[a#_ 6= _oto_o;)dm = za#y6 (VI,133 a)

f_ _) " Aas_sYdm : :Sa#Y_ (VI,155 b)_5 = O;O dm = la_ Y aSY

_2 f_ ;) • fsasGdm = :Sa#[= o dm = za_ aB =

_f, " f_2 (VI, 155 c)2dm Js (S6a_-Ja6)_a# with S: dm

therefore :

S 11 = S - jll etc. (vz,155 a)

Furthermore it follows from (VI,114) and (VI,121):

_P = bPCac z ep P a_xz (VI,154)

Hence

(_2._ )x_ (sa_a_ _ o.= )xbiA ast z. =

= Sa_R(_)bP°a b s .125e_
p o'1_ _. ast°at_ z

(VI,155 a)
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Since we have :

" 125_yi xi =6

with

= +I, if (a_Y) is an even permutation of (123)

= -I, if (a_y) is an odd permutation of (123)

= O, if (a_y) is no permutation of (123)

Furthermore:

_5 I x_ .R (_ ,rs m ÷n
"'#(_ " )bPba. b°aa z )xb a z

( "'(2 ) = (s_Y_a_y po or as _ mn

= sa_YR(_)bPba baaa b ma 6 I
po by a_ _ mn an_

(vz,136)

(vz,137)

(VT,135 b)

" (sa_Y6[ y6...R(_)bPa a b_ba. b.Cact_rSt)x b m _npox ar Ds _ amn =

= s_YSR(_)bPab°bb xc b m _t (VI,155 c)
p_x aa6abyac_ _ amnGantl

O

Thus, the summation of (VI,155 a)to(VI,135 c) yields M
S

1 I
and N in (Vl,129),respectively, with xl, x_ and x _.

in (VI,55 b)

(6.3116) Orbit system: Treatment of the Remaining Terms:

In the moment equation (VI,62 b) the expression

N = Ms - Js'uB - UBXJs UB + 2UsXSy"UB (VI,158)

remains to be represented in terms of the components of the system of

main axes. Summary:

x i
_ : a' ÷o : a' (VI,114)pa p op

4. p[ (VI,125)
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_2 +_ sinU = • %3 = + .cos (VI,125) •

According to (VI,119) we have:

_ p
u B = u B = u_ _'p

Hence:

-J .u = _ja_ = _ja
s B a8 B po

(VI,159)

(VI,140)

_ _" _J_Y xl oi .u-UBXJs.U B = +u I_ x y _ _x

= +u'_ulPa ' 6125j_aa' i
B _ po _a l_X

(VI,141)

t°+ "u Pa" = 2u_S _Y _ x_ oi =
+2_sX 2"UB s _ _ y

= 2u,Pa , 6123u_S_za
B p_ _a s

(VI,142)

with:

2 u3usl = +_ + &bc Us = -_c + Eb_ s = +_ + &_ (VI,118)

.@

The equations for M can directly be taken over from (VI,135) if
S

the b p_ and c of (VI,121) are given by
Oo

C_5 : +r.sin _ 0_2 = -r C_I = +I

b '13= +I b '22= ---I b,51= e I
r r-sin k0

(VI,145)

The rest of the c and b p° vanish• (VI,158) is obtained by summing up
p_

(VI,14o), (VI,141), (VI,142) and (VI,135).

_P = b 'p i' _' = c' *_e
p p_

P = b tp 1 1 = a' c _ e

(VI,121)

(VI,125 a)
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(6.3117) The Equation of Motion of the Center of Mass:

To obtain the coordinates of the center of mass as functions of time

the integration of

_s = _(_s ) + _m $2"'B(2) + _m $3"''B(3 ) + "" (vz,53 a)

is necessary. Of course, here is no reason of giving the components

in the system of main axes. In section (6.13), _ and the _(k) are given

in terms of spherical coordinates whose use is quite obvious under these

circumstances. In the following the index "s" is omitted in rs, _s' ks

in order to simplify denotation; hence, r, _, X are the instantaneous

spherical coordinates of the satellite's center of mass.

= r
s s

= (r-r¢2-r_2sin2_)_ r + (r2_+2r_¢-r2X2sin _.cos _)_ +

2, 2 ., 2 2.. )_x+ (r ^.sin _+2rr^-sin _+2r _k'sin _-cos

_(_ ) (_ r_ ( 2 -r 2r__si n _'coss = #-y.cos e))e -

(VI,144)

(vz,16)

According to whether the moment equation is solved in the earth's or

in the orbit system different Eulerian angles, i. e., different trans-

formations are obtained. Since the resulting expressions are, however,

equal, ap_, a' etc will not be distinguished in the following.p_,

s

ip = arpCrse (VI,122)

$2"'B(2. ) = u--o a c a c e •2-_
zm rarn s_ sm p_x

1 _aa _pa_

zm ra ra s_ sp

(VI,145 a)

I _ _ _m _abc .,Bp_ =6-m $3"''B(5) = sa_Yaraas_atyCraCsbCtc e " _p_ (VI,145 b)
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= 1.__Sa_Ya a a c c c B_POX_
bm ra s_ _y r_ sp _

(vi,145 b)

(6.312) Specialisation on a Satellite Moving on a Gircular Orbit:

For the numerical evaluation of the equations of motion, which will

be discussed in (6.4), the case of a satellite moving along a circular

orbit in the equatorial plane was taken as basis. Such an orbit is a

solution of the equation of the center of mass' motion (VI,53 a), if

there one puts

Then holds:

r(t) = R _(t) = 90 ° (VI,147)

and therefore in (VI,144):

% = -R_2_ r + R2_ k = +--:ea'r
R2

(VI,148)

hence

= 0 = = - const. (VI,149)

From (VI,125) follows:

UB=+ =_ (vI,15o)

yielding immediately

-Js'UB = o
(VI,140)

.UBX_s._ B _2 , , _Bo.125.'*a= +A a2ca2 j o 1 =
(VI,141.).
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%

= +_2_2a_3(J22-J33)t _ + ,,_y,_(._3Lj11)_ 2 +

, , (j1_._22)_{}+ a21a22 .

(VI,141)

= _ °_P al L s z_ s _

+ + _usb a22-Us b a_l

(VI,142)

with

2 - _c+&bc u 3 +#+&_u 1 = +_+&bc u = =
s s s

(VI,118)

M is obtained with
s

(1) = R 5e (I) = o A_(I =

from (VI, 155):

" ._("))x_(s2 (1) .

From (VI,145) comes

= SaPR(r!b,laa, b,S , _125ex
p=l ap 1 _st°atx I

Because of

and

b '15 +1 b,22 1 51 1
= = -_. b' = +_"

follows from (Vl, 121)

,,_ .eO

ep = gpcre

gl 1 = +1 g22 = +R2 = g35

,_ b '_o
bp = gp_

(vI,151)

(VI,152 a)

b_ 3 = +I b'22 = -R b_ I = +R (vI,152 b)
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Hence:

•o R(1) b 15. ,3_ap , , .123e_ 5al", , ,_22 $33)._1
M s = ' 01 _ as_a}t°at,Z =-_52a53k _ - +

+ a_3a_l(s33-s11)_2.+a_la_2(s11-S22)r3)

Furthermore, by reason of (VI,133 d):

(sPP_s _) = (jo__jPP)

Because of (VI,138) _ in (VI,129) and (VI,131) then reads:

(vi,153)

NI = +(j22-j33)(X2a_2a_+_aa_2a_3)+ 2X(U2sS33a_3-u_S22a_2)

(_" t t +_ _ ) _(u3__-u_33_3)
_2 = +(J33-J11)(x2a_3a_1R3 33 31

.122, 211 )
N3 = +(j11_..T22._f_2o,j\ _21a'22+Saa'R5 .51a'32 ) + 2_('UsS a22-UsS a;_l

(VI,154)

With this all members in the moment equation (VI,129) are known

uP). In the next paragraphs some ways tou p there means, of course, s

solve this equation will be discussed.

(6..52) Explicit Calculation of the first three coefficients of the

Lie Series Solution of Eq.(VI_1_1)

As far as the numerical evaluation of Eq.(VI,151) is concerned three

possible ways offer themselves.

_---_-t iI. Repeated application of the D-operator (Z = _ Diz)
o

yields very complex results for i _ ,5, such that we have to

restrict ourselves to few terms; thus, we have to choose a
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. small step length at = t 2 - tI from which, on the other hand,

an increase of the calculation time arises. Furthermore, the

truncation error might be considerable.

2. Derivation of recurrence formulas for DZz; in this case, one

may perhaps choose a relatively large step length.

3. The third approach starts from a representation of the solu-

tion in terms of main part and a "perturbation integral" to

be evaluated by iteration:

t

tDs _t _ (t-x)a ID2Dz_ i dx
Z = e z +

av
o a

o

In the present report, the method of recurrence formulas is treated

in extenso.

In this section the repeated application of the D-operator will be

treated.

The equations to be studied have the following form:

(b+B2c2b-c2B1 $) " -2
"_ = - _c(B1 + B2) - _'_ b -_(-_ + B2° - °2B1) -

- &2cB_(BI + B2) + 11 b + 12 b

_ &2bb(-B1c2 B2c2)+ &_c_b(B1 B 2) b&TI1 + BI_2 - B2c21
= + + - +

N I N 2

+ _(B_ + B2) c_ + _ _ - _ c (v_,_55b)

and

"2 - _2c_(_B3b2 _o2 _ b2B3(c2"_ = _ B3cc + + (B 1 + B2) ) + (1 + - _2) +

+ b2(B2S2 - c2B1 )) + _bcc(B 1 + B 2) + _}(B2 _2 -

N1 cb N2 c+

'3 11 b 12 b

B1 c2 - 1)_" +

(vI,155c)
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where _, 7, _ are the Eulerian angles, Ni the external torques, and . °

the Bi abbreviations for:

TI--A _ _ - T.
_i _ B2 _ B3 _ij i j

= II ' = I2 ' = I3 '

The Ii are the main moments of inertia and T i =fX2i dm

With the Eulerian matrix A

I ca - cab' -cab " ca' ail

A = _a + ca_, _a_ - ca, -a

cb , _b,

(VI,156)

where

a = sin ¢x b = sin _ c = sin

= cos _ _ = cos _ _ --cos

(vi,157)

The torques N i read:

N I = u2(Sa32a33 - a22a23)T25 + 2u(T3@2a23 - T2a22@ _)

N 2 = u2(3a31a33 - a21a23)T31 + 2u(T1a21@ 3 - Tsa2351)

N 3 = u2(3a31a32 - a21a22)T12 + 2u(-T1a21@ 2 + T2a22@ 1)

For our purpose we rewrite Eq.(VI,155)

i 6"_" :h " q ' "_-- z2 -- _-- z2,,_'
1 '¢ 1

(VI,158)

(vI,159)

where

.2
fl I = -gl Ia fl 4 = gl 4_}

K_c
f12 = g12 &_ f15 = 11 _

fl} " -gl}&) f16 = 12 b

(VI,16Oa)
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" g11 _ _c_(BI + B2)

g 2
g12 "g(Blc - 1 - B272)

g13 = c_(B_ + _2)

g14 = 1(1 + B1c2 - B2_2)

(VI,160b)

.2
f21 = g21 ¢

f22 " g22 _

f23 = g23 &_

f24 = g24 _

f25 " 11

_c
f26 = " 12

(VI,161a)

g21 = bb(B2 c2 - B1 _2)

g22 = gl 1

g23., b!B2 c2 - BI _2 - 1)

g24 = gl 5

(VZ,161b)

.2

f51 = g51 _ f54 " g54_

f52 = g52 &_ f55 = g55 _2

f55 = g55 &} f56 =

f57 = -b(f15 + f16)

(VI ,I62a)

os I(B, + B )s2 - B362!
g311 i S2(g52 1 "I + B2S2 _ BIC2) b2B3(c2 _ _2)]

-2 c2 = Bsc_g55 = g11' g54 = _(B2c - B I - I), g55

(VI,162b)

With the Eqs.(VI,160b), (VI,161b) and (VI,162b) we obtain the rela-

tions

w

gll = bg15

612 = b(g14 - _)

g21 = b(g23 + b)

g54 = -bg14

(VI,165)

According to Chapt.I the formal solution of Eq.(VI,159) reads
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t Q DQ (vI,I64)

The operator D reads in our case

(VI,165)

Obviously one has

DO_o o = (t=t)D°ao = a(t= to), = _(t=to), D _o 7 o

DI = f], Dido f2 DIao o = ,o _o = f3,o

D2 = D1fl D2_o = D1f2 D27o = D1f3,_0 _0 _0 0

With Eq.(VI,159) we obtain

Dlfl =_ Dlfl ,Q,o;

6

D1 f2 _ DI= f2,Q,o' Dlf 3 =_D1f 3
I ,Q,o

Df11,o = lh3(_ bc_ - hi'b)&- 2911f11 &

I+h 2

2

Df13,o = -hlh3& _ - g13h13

I _gl )_ + glDf14,o = _(2913_ - 4 4h23

Dfl 5 ,o

Dfl 6 ,o

I Ia31DN1 + NI (_b_ _bc)" 1
- ii b 2

II 1
- i262 _ 2DN2 - N2(_bc + _bc)

(VI,166a)

(VI,166b)

(VI,167a)
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Df21 ,o

Df22 ,o

= tih4_(_2- b2)+ 2h37bbccI& + g21f1._'&

= h3(h1_S - _bcB)&_ + g22h12

Df23,o = (267613 + _ _g23 )&_ + g23h13

Df24,o = hlh3_ + g13h23

Df25,o ={"_( (_DN1 - cSNI)

1 (oDN 2 + _}N2 )
Df26'° = - "_2

Df31 7o _1_(h_ _2 _ B362)_-2b_c_(h3 _-B3)i _ _ 2g31fiI_

Df32,o = - _" b(g32 + 2b(h2 + B3hl)) +

+ } 2(631 - B3b2c_)l &l_ + g32h12

Df33,o = h3(h1_b - _bcc)_ + g33

I _ )_ +
Df34,o = _ (g14 g11 g34h23

Df35,o ={h17_ + 2c_f2t _B 3

I

Df36,o = _-3 DN3

I il NI_I N2Df37,o=_ (_e- _b_) +_ (_ + _bBc)_ -

+_
-b(_1 DNI 1-22DN2 )]

where

-2 2
h I = c - c

- 2
h 2 = B2 _2 B Ic

h 3 = BI + B2

h 4 = B2 c2 - B1 _2

(VI,167b)

(Vl ,167c)
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h11 = q_ + f2_ h13 = fl_ + f3&

h23 _ f2_ + _3_

For DN i (i = 1,2,3) we obtain

DNI ,o

DN2 ,o

= +u i+ 3u(T 2 - T3)(+a32Da33 + a33Da32) + 2(+T3a23D@ 2 -

+ 1

= +u I+3u(T3 - T1)(+a53Da31 + a31Da33 ) + 2(+TIa21D@ 3 -

-[+T3(+2@ I + ua21) - uT1a211Da231

= +u{ +3u(T 1 - T2)(+a31Da32 + a32Da31) + 2(+T2a22D@ 1 -

-T1a21D@2) + [+T2(+2@1 + ua21)- uT1a21] Da22 -

-_-+T1(+2@2 + ua22)- uT2a22]Da21 t

D@I = (+flbC + f2 _) + &(b_} + _c_) - _c_ = +_@2 +

+ (+flb_ + f2 s) + &Sc_

+ (+ flbC - f2 c) + &b_

De3,o=(+:qS + f3)-&bl_

(VI,167d)

(VI,167e)

t

Da21,o=D(a_) + D(abc) = +(+&a_ - _ac) + (-&abc - _bc_ + ab_) =

= +_a,, + _a22 - _bo_

= +&a12 - }a21 - abc_
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Da23,o

Da31,o

Da32,o

Da53,o

= +D(bc) = +(+_b_ - _bc) = -_a51 + bc_

,, =

(VI,167f)

Further applications of the operator D yield very complex expressions.

(6.35) The solution of the Eq.(VI;155) b2 means of Lie series makin G

use of recurrence formulas

We now replace the system (VI,155) of three second-order differential

equations by the following system of six first-order differential

equations:

zj _ zj+3

_ 7'J+3 = fJ = nidji + nidji (VI,168)

(j = I ,2,3)

where use has been made of the following designations and abbreviations:

= Z1 , _ = Z2 , 7 = Z3

& = z4 , _ = z5 , _ = z6

as well as

n I = &_, n 2 = &_, n5 = _,

n5 = _2, _6 = _I' _7 = N2'

.2
n_ = a ,
l+

(VI,169)

(VI,170)

The dij are given by:

dll =-cc (B 1 + B2)
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-2 c2B1d12 = - "_' (1 + B2c - )

1 -2 2
d15 = - _' (BzC - c B1 - 1)

d14 = - cE5 (B 1 + B2)

1 c

d16 - 11 b

I c

dl 7 - 12 b

I -2 B2c21d21 = -b I + BIc -

d22 = c_b (B 1 + B2) = -dll

d25 = -dl I

= _2
d24 bb (-B 1 + B2 c2)

d26 =

c

d27 = i2

d51 = - d14

1 b2B5 2 -2d32 = _" (1 + (c - c ))

2 2
d55 = _-. (B2_. - BlC - 1)

d54 _(_Bsb2 _2= c + (B1 + B2))

e55 = Bsc_

I c_ cb

= " T_2b

(VI,171)

(VI,172)

(VI,175)

The formal solution of the system is given by:

tQ
Z_ = etDz5 = _--'_---- _. DQz

_=O

(_ = 1 ,2,5)
g

(VI ,I74a)

and

150



oo t_ D_+I (VI,174b)
Q=O

Nowwe attempt to derive recurrence formulas connecting higher order

powers of the D-operator with lower ones; for this purpose we write

DQ+2z_in the following form:

DQ+2 DQz. = DQ(D2zi) = DQf. = ( n.d. + _ n.d )
i i i=I I ji i=6 i ji

_--- IDJlni Q-Jl Jl Q-Jlill= " (JlQ ) D d31..+ D _. D dj =
J1=o

IF _Jl 2z Jl-J2
= _ (JlQ Q ) (J2) (DJ _I D

J1 =o ([32 =o

Jl £-J ld t+ D N_D ji
.#

where Jl -_ Q' J2 _ Q

Q-Jl
D d..:

QI

_Jld) o_
z_ 2 ji

_-Jl Q-Jl
D dli = -(B I + B2) D cc

Q-Jl _ J4 Dj
D c_ = DJ4c_ = (j5) 5cD j4-j5 c

05

J5 " - J5-I " J -1-J6

D c = +D 35 1(cz6) =3_ 6 (J5"-1)hJ6j6 cD 5 z6

• j4_Js_ I
D J4-j5 _ = D (cz6) =

J4-J5 -I j4-j I -J6
_-_ ( .5- )DJ6cDJ4-J5 -I z6

D6 36

+

(VI,175c)

(vI ,I76)

(VI,177)

(VI,178a)

(VI,178b)

where J6 % J5 - 1, J4
J

- J5 - I - J6 -- Q' J5 - Jl - J6 _- Q (VI,179)
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_-j

D ld12:

-Jl Q-Jl b £ -jl _c 2 Q-jl bc 2
D d12 = -D _- B2D (7) + BID (--_--) (VZ,laO)

Q-J1 1 DQ-Jl-J3Q-J1 b _ ( ) Dj5 b (VI 181)

D _ = Z__-- J3 _
J3

J3 I J3 -1 b J3 -I

D _ = - D (_ _.5)= -D (Sb-_b-lz_)=

J3 -I (j3-I) Oj4(_b-1)Dj= - _ 3-1-J4(b-1z5) (VI,182)

34 J4

J _ J4 Dj "4-j

D 4(_b-1) = ,.._.....(j5) 5 _D 3 5 b -1 (VI,182a)
_5

j5-1 " J3 -I-j4 j I-J4 "6b_i " -1-J4-J6

D -34(b-1z5 ) = >36 ( 3-j6 )D3 DJ3 z 5 (VI,182b)

Q-Jl-J3 11 11-I

]) _ = ]) _ = -D (bzs) =

1 -1 (11_I -1

= - _2 12 )DI2DD 11 -12z 5 (VI,183a)

11 11-I 1 -1 1 I-1)D 1 -1-i 2

D b = D (bzs) = _2 (12 2 _DI1 z5 (Vl,183b)

i- I.
11 - I - 12 - _, J4 - Q' J3 - I - J4 _Z Q (VI ,184)

Q-Jl 5 _ e-Jl)DJ3 b DQ-Jl-J3 -2
D (_ _2) = ( J5 _ c (VI,185)

J3

J3 b (VI,181)
D _: see

£-Jl-J3 -2 11 11 -12

D c = D11(cc) = _ (12)D 12 c D11 c (VI,186)
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12
D _: see (VI,178)

Q'Jl _c 2

D (-%--)- _-Jl DJ Q-J( J ) 3 b I"J5

J5 3 _D

2
c

D J5
_: see (vi,181)

Q-Jl-J5 2
D c

11 1 -12
Dll(cc) = _-- (1 I) D11 c D11

12 2

11
D c: see (VI,178)

(VI,187)

(VI _188)

Q-Jl Q'Jl -2 Q-Jl 2 Q-jc C I I

D d15: -B2D _- +.BID _ + D -_

Q-Jl _2 _ Q-Jl
--" 2_--(j )

9 b J5 5

• 9Q-jl-j9J5 I 5 -2
c

9J5 1
_: see (VI,182)

_-Jl-J5 -2
D c : see (¥I,186)

Q-Jl c )
D %--= (J5

J5

' I DQ-Jl-J5 2D_3 _ e

9J5 1
_: see (VI,182)

Q-Jl -J5 2
D c : see (VI,188)

(VI,189)

(%q ,190)

(vz,191)

Q-Jl I
D _: see (VI,182)

Q-Jl Q-J1

d14: -(B I + B2)D (bc_) = D d14

Q-Jl Q-J_ Q'Jl " Q-JlD (_o_)--5=---( ) DJ3 _D
J3

(c_)

(VI,192)

(vI,195)
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J3
D _. see (vi,183)

-Jl
D c_: see (VI,177)

Q-Jl

D d15:

Q-Jl I Q'Jl c

D d16 ='fT D

_-Jl Dj_-Jl c ( J ) 3
D _= a3 3

J3
D c: see (VI,178)

Q-Jl
c D

b

(vi,194)

(vi,195)

d17"

Q-Jl I
D _: see (VI,182)

_-Jl i Q-Jl

D d17 --"_2 D -_"

_-Jl _ Q-Jl Q-Jl " Q-Jl-J3 1

D _ _ _ ( J3 ) Da3 _ D
J3

J3 - (vi,178)D c: see

(VI,196)

(VI,197)

d21 :

Q-Jl -j} I (VI,182)
D -_: see

Q'Jl Q-Jl Q-Jl Q-Jl
D d21 = -D b - BID bc 2 + B2D bc 2

Q-Jl
D b: see (VI,183)

Q-Jl
D b_2 : -_(Q-Jl " Q-Jl-J} -2

J3 J3 )DaD b D c

(VI,198)

(VI,199)

154



J5 (VI,D b: see 185)

Q-Jl -J5 -2
D c : see (VI,186)

_-Jl
Q-Jl

D (bc2) =
°5

Q'Jl Dj " -j( ) 5 bD_-J1 3

J3

J3
D b: see (VI,185)

2
c (VI ,200)

Q-Jl -J3 2
D c : see (VI,188)

d22:

Q-J1 Q-Jl
D d22 = -D (_d11)

Q-J1 Q-J1

D d25: D

_-Jl Q-Jl

D d24: D

Q-Jl

d23 = -D d11

Q-J1 _-_ Q-Jl
(b_2) _ " ( J3 )

J3

£-JI Q-Jl

d24 = -BID (b$c 2) + B2D (bbc 2)

D33 (b$)DQ'Jl-J} _2

1
I -2

D c : see (VI,186)

i

J5 _3_ J5 "
D (bb) = _. (j4) D04 b

DJs-04

04

J4
D b: see (VI,185)

(VI,201)

(VI ,202)

(VI ,205 )

(VI,204)

(VI,205)

Js-J4
D b: see (VI,185)

Q-Jl Q-J1

D d26 : D see (VI,178) (VI,206)
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Q-Jl
D d27:

Q-Jl
D d52:

I Q-Jl

12
c: see (VI,178)

Q-Jl _-Jl
D d}1 = -D d14

Q-J1 1 Q-J1 Q-Jl

D _ + B}D (bc 2) - B3D (bc 2)

Q-J? I

D _: see (VI,180)

Q-Jl Q-j Dj e-J-J5_-Jl i 3 i
D (bc 2) : "7"-( ) bD

J
5

J5
D b: see (VI,185)

2
c

(VI,207)

(VI ,208)

(vi,2o9)

(vI,21o)

Q-J1
D

Q-Jl-J5 2
D c : see (VI,188)

d55:

Q-Jl bc 2 Q-Jl Sc 2 Q-Jl b Q-Jl

B2D T- BID T- D -_ : D d55

D T" see (vz,185)

Q-Jl bc 2

D --6--: see (VI,187)

Q'Jl
D _: see (VI,181)

Q-Jl _-Jl Q-Jl
a}4: D d}4 - -B3D (ccb 2) + BID (c_ 2) +

Q'Jl
+ B2D (c_ 2)

(VI, 211 )

(VI,212)
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Q-Jl)DJ5 (c_) DQ-jI"j3 b2
(ccb2)" ( J3

03

J5
D see (VI,17S)

11 b2 __L 11 -12
D = z._-- (12) DI2 b D11

12

12
D b: see (VI,185)

Q-Jl _-Jl Q-Jl Dj Q-JI"J5 b2

D (cSb2): = 3_-- ( J5 ) 5 c_ D
5

Q-Jl-J_ .. _- • Q_jl.j3
Q-Jl-J5 b 2 (Q !I 55)D34 b D b

D = > J4 J4

D j4 b: see (VI,183)

(VI,215)

(VI,214)

(VI,215)

(VI,216)

J5 (VI,177)D cc: see

Q-Jl

D d57:

Q'Jl Q-Jl

D d55 = BsD (c_) see (VI,177)

Q-Jl

D d56 = 0

Q-Jl I _-jI cb

D d57 = - _T D -_

Q-Jl

Q-Jl cb 2__..--q'-(Q-Jl Q-Jl-J5
D -_-- 55 J5 ) D53 c D

JZ

D " ¢ : see (VI ,178 )

(VI,217)

(VI,218)

(VI ,219)

(VI ,220)
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Q-Jl-J5
D _: see (VI,181)

Q-J1 1 £'Jl _S
D -- (vi,221)

D d58:-Y2 b

_-_ £-Jl-J5 _ (VI,222)

DQ-Jl -_=--cb J5 (Q_II) D _ Dj5 b

J5
D _: see (VI,181)

11
D see (VT,178)

J

The recurrence formulas for D IN i (i=1,2,5) can be derived in analogy

to the expressions presented above.

D31N. :
1

Jl
D NI:

..... 31 u2T25D J ID N I = (5a52a55

Jl

- a22a23) - 2uT2D (a2203) +

Jl

+ 2uT3D (a25@)

Jl _ Jl Dj Jl -jD (a52a55) = (j) 5a32D 5855

33 5

J J _ J5

@

D 5a52 = D 5(_b) = z___ (j4) Dj4 _ Dj3-j4 b
J4

J4 (VI, Js-J4 (VI,D _: see 178); D b: see 185)

(VI,225)

(VI ,224)

(VI,225)

4*

Jl-J5 = Djl-j5 _: see (VI,183)
D 855

Jl Jl -j
Jl (js) DJ5822 D 5a25

D (822a25) = J5

J3a2 J5 J5 D35D 2 = D (_a + ca_) = D (ca) + (cab)

(VI,226)

(VI,227)

(VI,228)
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J3 " " "

J5 J5

D (ca) = _ (j4) Dj4 _ DDS-J4 a

DJ4 _: see (VI,178),

11 11 -I

a : D a : D (_z4) =

11 -I 12 -I -12= ( i ) D aD 11

12 2

11 11 -I

D a = -D (az4) :

z4

i-1 11_1 "I-12
)DI2aD11

- -1_2 "( 12 _4

J _=_ J5 '

D 3(_bc) = J_44 (j4) DJ4 (_) Dj3-j4

• -J4DS}
c: see (VI,178)

• J4
DJ4(a_) : (j5) Dj5 _DJ4-J5 $

J5

DJ5 -
a: see (VI,251) and (VI,232)

J4-J
D 5 _: see (VI,185)

_. . _ J2-J})DJ 4 _DJ2-J4

J -- DJ2"j} ab 4_-_( J4
D 2 JSa25 = _

J4 - J2-J5 -j
D a: see (_1,254), D 4 b: see (VI,185)

Jl _ Jl " Jl-J5
D (a22@3) = . (js) DJ3 a22 D @3

s3

DJ3a22 : see (¥1,227)

(VI,229)

(vz,232)

(VI,255)

(VI ,234)

(VI,255)

(VI,256)

(VI ,257 )

(vZ,238)
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Jl-JS(z4B + z6)
83 = D

• _. jl-JSz 6
DJ4 J1"J3-J4 B + D= (J1"J3) z4D

34 J4

Jl-Js-J4 B: Bee (VI,185) J4 _" Q' it"J3
D

. jl-j3Jl D _2
Jl (j3) DJ3 a23

D (a_3_) " J3

Z.

- Q

J3 (vl _75)
D a25: Bee ,

Jl-JS(z4_b . ZsC) =J1"J3 = DD _2

_Dj 1_j 3
"-" (jl-j5) (za_b)

= J4
34

• _. , • jl-js-J5

Jl =_ J5D -J3(z4cb) (31"J3)D35(cb)D

35 Z

jl-j}-j5 -

(VI,2_9)

(VI,240)

(V1,241 )

(VI ,242 )

+ D -3"5(z5C (VI,243)

z4
(VI,244)

" -J6

36

c- see (vI,178); DJ5"j6 b: see (VI,183)

(v1,245)

(VI,246)

J1"J3
D (ZsC)_

DJ4 Jl-Js-J4Jl-J} J1"J}) z 5 D c

3 4

J4 (vi,178)D c: see
J4

(VI,247)

(VI ,248 )
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Q

Jl
D N2:

Jl Jl ID N 2 = D (3a31a33 - a21a23 ) u2T31 +

+ 2u(T1_21_3 - T3_23_)

Jl _ Jl Dj Jl -jD (%_%3)- (j) 3 3
3 a31 D a33

J3

J3 a31 J5 _ J} " DJ}-J4
D = D (cb) = (j4) DJ4 c b

J4

J3-J4
J4 (VI,178) ; : see 183)D c : see D b (VI,

Jl -J3

D a35: see (VI,226)

Jl _ (Jl " Jl"J3
D (a22a23) = _3 J3) Do3 a22 D

DJl-J3
a23: see (VI,235)

DJ3
a22: see (VI,228)

a23

D 3(a21@3) = (j

,s4 4

J3-J4 (VI,239)
D @_ : see

J J4
D 4 a21 = D (_a + cab)

• j3-j4
3) DJ4 a21 D @3

-_ J4= (j5)
35

• J4
DJ4 (ca) + D (caB)

J
D 4(_a): see (VI,229); J4 (VI,230)D (cab) : see

(VI,249)

(VI,250)

(VI,251)

(VI,252 )

(vz,253)

(VI,254)

(VI,255)

(VI,256)

(VI,257)

(VI,258)

(VI,259)

(Vl ,260)
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jl.j 3Jl Jl DJ3 D

J3 3

J5
D a23: see (VI,235)

Jl-J5 Jl-J3(z4c b

jl-J5 Jl-J5 _
-- D (z4cb) + D (ZsC)

• _. it_j3 J -j
jl-jS(z4cb ) = _(JI"J3)D z4 D I 5"J4(cb)

D J4
J4

jl-j5 4 Q

11 _ 11 -12
DJl-J3-J4(cb) = D (cb) = z--- (12) DI2cDII

12

12 11"12 (VI 185)
h c: see (VI,178); h b: see ,

• -" (J J4 Jl-J3-J4J1"J3 _ I-J5) D zsD
D (z5_) = J4

34

J4 @ Q

J1"J3-J4 (vi,178)D c: see

(VI ,261 )

(VI,262)

(VI,263)

(VI,264)

(VI ,265)

(VI,266)

(VI,267)

(VI ,268/

¢

Jl

D N}:

J J'ID 1N 3 = D (3a51a32 - a21a22)u2T12 +

+ 2u(-T1a2192 + T2a22@1) _

Jl  (Jl) J3 it-J3
D (a31a}2) = z..__ j 3 D a}1 D a52

J3

Jl-J3
J3 D see (VI,225)

D a31: see (VI,251); a32:

(VI,269)

(VI,270)

(Vl ,271 )
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Q

Jl Jl DJ5 Jl-J2

D (a21a22) = (js) a21D
J5

a22

J
D 5a21: see (VI,259) 

Jl-J2
D a22: see (VI,227)

D (a21 _ = 05

Jl-J3
a21 D @2

J5
D a21: see (VI,259);

Jl-J5
D @2: see (VI,245)

_ Jl " Jl-J5

DJ1(a22@1) = J5 (Js) DS} a22 D

Dj 3
a22: see (VI,228);

Jl-J5
D @I: see (VI,265)

(VI,272)

(VI,275)

(VI,274)

(VI,275)

(VI ,276)

(VI ,277 )
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FLOW DIAGRAM

c

h times
/

h : numbe_

of ste ,s

I Zi = zi(t=to), Zk = Zk(t=to) ]

I , D °D°zi D1zi ; zk

°
ao,ao'bo'bo'Co ' o

o DON
D dji,

D2zi, DI zk

D1dji , DINe

D3zi, D2Zk

D2dji , D2N_

D4z D3z ki'

I

i

L DYzi, D ?-Iz k

Zi(t=th), Zk(t=t h)

i

i=I ,2,3;

k=4 ,5,6

_=I ,2,3

7=number of
maximal terms

D_z to be cal-

culated
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(6.34) Application of the iteration method to the equations (VI,155)

Essentially we have to solve the following system

{I = z2 £4 = f2

_2 = fl _5 = z6

_5 = z4 _6 = f5

For a circular orbit the explicit form of fi (i=I ,2,5) is given in

Eq.(VI,155). The operator D appearing in Eq.(III,74) reads in that

case

(vl,27e)

_= _ (VI,279)D = _i _z--_

We proceed now to the construction of _(t) (see Eq.(III,859. This

problem is from the numerical point of view a very important one, be-

cause the computer time and the maximum accuracy depend very strongly

on the choice of _(t). We are not experts on finding such effective

functions, let alone on finding the most effective one. Nevertheless

we would like to propose such a function _(t). We choose

9(t)
= _ DQz(t=to)-

0=o

Here DQz can be calculated either by recurrence formulas (see Sect.

(6.35)) or by applying the operator D explicitly (see Se_.(6.52)).

The latter procedure yields very complex expressions for Q > 2.

According to Eq.(III,75) the operator kD2 reads in our case

6

kD2 = = (zi(t) - i(t)) _i (VI,280)

In the interest of clarity we describe the first iteration in more
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detail. For this iteration k = o. Using the denotation

az.a _ a.,1 _=oD2 reads explicitly
I

oD2 = (Zs - oZl I z2 - oZ2)82 + (z3 - 23)a5 + (_4 - oZ4)a4 +

- o 6 _ " oZI)81 + (fl - 2)a2 +

+ _ +
+ (_'4- oAZS)03 + (f2 - o_4)a4 (z6 -oZ5)_5 (f3 - #6 )06

(VI,281)

According to Chapter I we have

t2 oo t__Q
z(t) = D°z(t=to ) + tD1z(t=to ) + _-D2z(t=to ) +__ Q! DQz( t--t

Q=3 0

__

oo t_

- _(t) + Q! DQz(t=to) , i.e.,

we choose for _(t)

t2
Az(t) . D°z(t=to ) + tD1z(t=to ) +-_- D2z(t=to ) (VI,282)

With the Eqs.(VI,278) and (VI,279) we obtain for z_ = "_
o

2
Ix t
z (t) = z1(t=to) + tz2(t=to) + 2-F.'flo I

A t2 D 1
oZ2 (t) = z2(t=to) + tf1(t=to) + _T.' fl

2
A t

oZ5 (t) = zs(t=to) + tz4(t=to) + _.' f2

t 2 D1
oZ_4(t) = z4(t=to) + tf2(t=to) + _.' f2

^ t2

oZ5 (t) = z5(t=to) + tz6(t=to) +-_T, f5

t 2 D 1
0z_6(t) = z6(t=to) + tfs(t=to) + _T f3

(VI,285)
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With the Eqs.(VI,281), (VI,282) and (VI,285) oD2 reads

oD2 = (z2(t) - z2(t=to) - tf1(t=to))81 +

+ (f1(t) - f1(t=to) - tD1f1(t=to))82 +

+ (z4(t) - z4(t=to) - tf2(t=to))a5 +

+ (f2(t) - f2(t=to) - tD1f2(t=to))84 +

+ (z6(t) - z6(t=to) - tf3(t=to))85 +

+ (fs(t) - f}(t=to) - tD1f3(t=to))86

Putting a _ 2 Eq.(III,85) reads

t

Ig i : hi(oZi(t ),t) + 1

O

oD2D1zil _ (_),_
O i

t

O

dx +

o 1

dx, where

(VI,284)

(vi,285)

in our case h(oZi (_ t),t) is given by

/%

h(oZ 1(t),t) -- oZ1(t)

A .-q _k

h(j1(t),t) : f1(oz, oZ2, ...., oZ6)

h(oz3(t),t) = oZ_3(t)

h(oz4(t),t ) = f2(oZl, oZ2 , ..-, oZ6 )

h(oz5(t),t ) = o_5(t)

h(oz6(t),t ) = fs(oZl , oZ2 ' -.o, oZ6 )

IoD2D _o_i we obtain the relationsand for z i (i:) ,_

(VI,286)

167



IoD2DI Zl ii _
z.(_) ,_

o 1
z (_),_

o 1

= [f1(z(t),t) - f1(z(t=to),to) - tDfl] ,, =
oZi(_) ,_

/k A /k

= f1(ozl(_),oZ2(_),...,oZ6(_))-

-f1(zl(t=to), ..., z6(t=to),to)- _IDfl] tx
z.(_),_

o 1

Io° °Iz lEoo  ll.
%,i(_),_ oZi(_),_

(VI,287)

-- D2f 3
D2DIz6 o_i(_) ,_ oZi(_) ,_

oD2D2z ] we obtain

|

and for i o_Zl(_),

oD2D2Zl = D2f I ^
(_),_ z (_),_

o i o i (VI,288)

oD2D2z6 _i(T),_ =[ D_f31oD2 _ -
o i_)'_

t

lgl " o_1(t) + f
t
o

With Eqs.(VI,285), (VI,286), (VI,287) and (VI,288) Ig i reads

^ ^ z_6(f1(oZ1(_)' oZ2 (_)' "'°' o (_) '_) -

- f1(z1(t=to) "''' z6(t=to)'to) "

- _[Dfl ] A )d'_ +
z. (.,),._

o 1

i [ 1+ (t-z) oD2fl dT

o oZi (_)'_
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or

t

Ig3= °{3(t)+ i (z2(°#(_)'_)
o

t

- f2(z(t=to))

o i

I°_ _"I _,__t-_l_d_

-_ f o_i(_),_ o U lozi(_),_
t

ig4 = f2(o_(t),t) + D2f 2 _(t),t
O o

°D2hf2 2(_) ,t

t

+ I (t-_)
o

t

Ig5 " °_5(t) + I (f3(°z_(_)'_ - f3(z(t=t°)) "

o

d'_

With Eq.(III,75) we have
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t

Izi(t) = zi(t=to) + g('T) dT

o
(i=1,2,o..,6)

The second iteration (_ = 1) yields for _=2gi=1, e.g.

t

= _i + I (fl _' ,291 1 (IZ(T) T) - f1(z(t=to) -
t
o

t

+ l-+/o+,/_ _°_+l_t-+>,+1^ aT

and for X = Q+I (i.e., Q iterations)

_gi reads for i = I

t

= + (fI(Qz(T)'T) - f1(z(t=to) -Q+lgl QZl

o

t

-_I DfllIAz (T),_ dT + i (t-T)IQD2fl] _ (T),T

Q i o _ i

aT

In our case (see Sect.(6.32)) the integrations appearing in the above

formulas can be carried out analytically.

170



. (6.4) The Numerical Evaluation

4_

(6.41) Now, the problem of solving (VI,131) with N from (VI,154) was

given. For the pur;_o_e of information, Lie series

a(to+t ) : ao

&(to+t ) =

t2 _2 t3
+ t'Dao + _-'_ ao + 6"-'D3ao + "'"

t2
Da + t.D2a + "D3a + ...

O O _-- O

(vi,289)

etc., broken off after a few terms, were considered, see (6.52).

Unfortunately, by lack of time, we could not start an iteration process

corresponding to (6.34) with (VI,289). The computation of D3a was
O

already rather difficult (see (VI,166 b)); hence the direct compu-

tation of the next terms Dka would not be recommendable, but it might
O

be suitable to use recurrence formulas (see (6.55)) together, with

Dka , k = 0,1,2,3. Using such an approximation even one iteration
o

step may be sufficient to provide a very satisfactory result.

(6.42) The fact that, when using (VI,131) with (VI,154) to describe

the satellite's attitude motion, the singularities b = sin _ = 0

coincided with the two points where the satellite should be at rest

give rise to a number of serious objections: Simply speaking, the

better the stabilization, the worse the corresponding result. Never-

theless, we solved these equations, since (a) we would not renounce

this most intuitive choice of Euler angles (B is the deviation of a

satellite symmetrical to i 3 from the local vertical), (b) we had no

time for another procedure, as, e. g., the introduction of the Cayley

variables, and (c) we considered it to be an improbable event that

the satellite should approach the critical domains around _ = O,

closely enough, just in our examples. These facts and the very small
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I
step length caused by them (_ degree of the angle in the orbit,

.°

i. e., more than 7000 analytical continuations per orbital revolu-

tion) made the results appear somewhat doubtful; but Lie series

long before this proved to be very suitable in such critical cases.

(6.43) After some other computations described below, we started

calculating the motion of a satellite with j11 = j22 = 96030 kg'm 2,

j33 60 kg.m 2= , height 1667 km about the earth's surface. The

initial values are a = O, 6o = 2'5o' To = 45o, _ = _o = 5 °/min,o o

_o = 0. _(_) and _(_) = d__dtwith _: = (t-to)./UB/ are plotted in

Fig. 3 from chapter VI (instead of _ is given I0_). The figure shows

5°that _ is bounded by 0_3, . _fe interpret this as a stabilization

effect. The behavior in time of _ suggests a resonance effect with

the motion in the orbit (a period of two orbital revolutions), but

as we presumed an exact circular orbit no coupling of the two motions

is possible. But it is just this periodic behavior which makes us

believe that the results are astonishingly good, under the circum-

strances given. It is by no means understandable that a wrong result

should produce such a clear period and reproduce the initial value

of B_ _(_=4_) = 6(0) = 2,5 ° •

(6.44) At first, the "horizontal" case was treated in the test cal-

culations: a c = To = 0 = ao = _o = $o' _ = 90°: The first coefficients

of the Lie series solution vanish, and the assumption that this result

should also hold for all following t_rms is straightforward. Conse-

quently, all quantities would have to remain unchanged. Accordingly,

this case was used to study the error propagation as a function of

the step size (2 to 6 revolutions). The result was that the step size

should not exceed 0,5 ° and possibly be considerably smaller, if the
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solution approaches a singularity. For the rest of calculations

we usually chose a step size of 0,05 ° .

(6.45) As a second example - strictly speaking, for the purpose of

information - we considered a satellite with J11 = J22 10363 kg'm 2

J33 = 60 kg.m 2 and a° = Yo = 0 = _o = Yo ' 6o = 45°' ao = 15 °/min.

The axis of symmetry pendulated between _ = 5° and _ = 175 ° , and

and _ showed the expected increasing behavior close to the singu-

larities: _ = (cu I + _u2)/b, _ = - b_ + u 3
s s s; if we assume that also

close to the singularities the satellite's behavior is "physically

_2
meaningful", i. e., that u

s
remains restricted to reasonable values,

& increases strongly because of b = sin _--b0 and $ tends to -_.

On the basis of these results the case discussed in (6.13) was then

calculated.*

D. Floriani is indebted to Dr. Knapp, Docent in the Institute for

Computation Techniques, University of Innsbruck, for a number of

valuable discussions.

* Tables of numerical results are available upon request from Chief

Applied Mathematics (RRA), Research Division, NASA Headquarters.
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(6.5) Appendix; Conclusion

First we will deal with some more papers concerning the attitude

motion of satellites.

Bounds on the Librations of a Symmetrical Satellite (Ref. 128): In this

paper the case of a rigid, symmetrical satellite moving in a circular

orbit was taken as basis. This corresponds to our specialization in

_2 2

(6.312) with uB = n , J33 = C, J11 = A = J22" Two systems are used: the

orbit system ,2, (equal to ,-1%,+i from (VI,123)) and the

system of main axis {_,2-_,_)(our system II {_i,_2,_5} from VI, Fig. 2).

To avoid sing_larities in points of interest two sets of variables are

+ t

used for transformation: (a) _0,9,_: cos _o = la_2 , cos @ = -a11 in

(VI,126), w _ y; (b) 91,92,W: cos 91 +a_2- = , cos @2 = a31' in (VI,126),

_[ = V. The Hamiltonian describing the rotation is splitted up in one

term R2, containing the an_llar velocities, and another term U (the

"dynamical potential") free of them. In the followin_ _,'by help of U these

values (_,@) or (@1,@2), resp., are sought, for which the axis of

{_ ?,_ (soin s,eed against C _)symmetry is at rest i_ , . Such an "orbit ang. vel. _ = -

- diagramm is subdivided into seven domains with different nature of

stability. These seven cases are graphically discussed.

Tumbling Motions of an Artificial Satellite (Ref. 129): In this work

the motion of a satellite with moving internal parts effected by gravity

gradient torques is treated. These torques cause relative motions of the

individual parts and produce internal friction destroying rotational

energy. Thus the sate]lite's tumbling motion by and by decreases until

he is ca}tured into librational motion. This type of motion may occur

after separation from the booster rocket or after collision with a
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.meteorite. As a simple model a satellite is considered with two

internal, symmetrical inertial wheels, one arranged to rotate about

the body's main axis of inertia, the other about a transverse principal

axis. To investigate the satellite's motion a kind of perturbational

method is used, since the direct digital solution of the equations of

motion seems to be very costly in time and in round - off errors. Thus

one obtains a set of non-linear differential equations for the averaged

motion the integration of which is essential easier. Then results are

discussed; it is, e. g., found that, for tumbling an_lar rates greater than

three times the mean orbit an_ullar rate, the time to capture increases

as the cube of the initial rate.

Stability of Damped _echanical Systems (Ref. 13o): The question for the

stability behaviour of damped, mechanical systems is of _:reat importance,

for the investigation of the motion of space vehicles. In the work

considered here for some systems their Hamiltonians prove to be useful

"test-functions" for application of Ljapunov's method. In the important

case of gyroscopic systems there is a principal difference between the

Hami!tonian belonging to and the total energy. After a theorem demonstrable

by Ljapunov's method three corollaries are stated. The second of them,

e. g., gives the important result that the behavior in stability does

not depend upon the magnitude or analytical form of the power on the

premises demanded.

On the Stability of a Body with Connected Moving Parts (Ref. 131):

The stability behaviour of bodies with holonomically constrained moving

parts, i.e., mechanical systems with internal dBmping, is investigated.

After some preliminary definitions the equations of motion of such a
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system are considered. Assumption is, that the attitude motions do not

effect the trajectory of the center of mass. By help of the direct

method of Ljapunov a general method to determine stability problems

is discussed and first a!)plied to the stability of damped mechanical

systems, then to free nongyroscopic systems. Necessary and sufficient

conditions for (asymptotic) stability are given. Some special cases are

discussed as illustration to the theorems derived. Note in detail the

case of a spinnin_ asymmetrical body damped by a control moment gyro

is treated. The general theory is also applicable to non-linear systems,

and it gives bounds on the configuration space convergence regions.

Analytical Methods for Practical Investigations on Attitude-Controlled

Satellites (Ref. 132): Assuming the orbit of the centre of mass to be

an ellipse in an invariant plane torques acting on the satellite are

discussed as follows: gravitational torques (but only in the lowest

approximation as used by us in (6.312)), aerodynamic torques, magnetic

torques (due to a permanent magnet), hysteresis damping (linear

approach combined with a sort of perturbation method). For the followig

the differences between the s_tellite's actual attitude and the attitude

desired are supposed to be small. These d_viations are taken as variables

in the equations of motion given in the following. Expansion to these

small quantities simplifies the equations. Finally, one obtains in the

Eulerian angles three linear differential equations of second order with

periodic coefficients (t is replaced by the satellite's true anomally).

In the next paragraphs, a method for analytical treatment of such

equations is described and then used to investigate (a) the stability

of angular motion, (b) the complete solution for the stationary angular
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motion along the orbit, (c) the response of the satellite to deter-

ministic and (d) to random disturbances. The first German satellite,

625-A-1, is taken as example.

Nonlinear Resonances Affecting Gravity Gradient Stability (Ref. 133):

This work deals with the influence of non-linear resonances on the

attitude librations of an undamped rigid satellite. The only torques con-

sidered are due to gravitational effects. Further assumptions are:

(a) for the gravity potential U(F) = _ holds exactly (yields _ = y = 0
r

in (VI,14)), (b) the orbit of the satellite's centre of mass is a planar

ellipse with small eccentricity, eKO,S (leads in (VI,25 a) to B(k ) = 0

for k_l; this corresponds to our specialization in (6.312) or Ref. 115

(Scient. Rep. 15), respectively). First a simplified equation of motion

for the satellite's attitude is given and the stability behavior as a

function of different mass distributions is discussed. Two main groups

of resonance effects are distinguished, viz. "internal" (for exact cir-

cular orbits) and "external" (0_e_0,1) resonance. In the second section

the Hamilton function used to describe the attitude motions is discussed,

where for the total potential energy V the approache V: = _(_)dm(_) =

= U -m - .A(1 )s 2" (see (6.131)) is taken. With some more assumptions

concerning angles and momenta the authors obtain linearized equations

of motion solved in section III by means of an averaging method and

canonical transformations. Then the behavior at internal near-resonance

is treated in section IV and near external resonance in section V.

Stability of the Planar Librational Motion of a Satellite in an Elliptic

Orbit (Ref. 134): The paper numerically investigates the bounds that

must be placed on a disturbance applie_ to a gravity gradient stabilized

satellite of arbitrary shape in an (exact) elliptic orbit such that it
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will librate and not tumble. In section II the equations of motion are.

derived, by the help of Lagrange's formalism. The approach for the

total potential energy is equal to that in Ref. 135. The formula for

the total kinetic energy follows immediately from the assumption of a

planar librational motion and seems us to be as doubtful as this assump-

tion, because it leads to curious consequences, also immediately *).

The investigations on stability are carried out in the phase space

(section III). The limits ema x for the eccentricity e imply periodic

solutions, discussed in section IV. In section V the results are summa-

rized: e. g., the analysis points out that there is a limit to the

value of orbit eccentricity, dependent on the satellite geometry, for

which stable librational motion is possible; it appears that a large

value of inertia parameter (i. e. a slender satellite) and a small

value of eccentricity would help to ensure stability; for 0,38(e

gravity gradient stabilization is not possible.

1 = u 3*) Formula (1) yields u = 0 in (VI,118). Thi,3 means, bc& = -c_,

bc_ = bc_ (denotation from (VI,116); _ is equal to _ in Ref. 134). Let

us consider a satellite, symmetrical to i5 from VI, Fig. 2. There, the

choice of starting point for the counting of y is irrelevant. It

follows then that the planar librational motion _ , 0 yields a , O,

i. e., the satellite does not remain in the orbital plane. Thus, the

term "planar libr. motion" has to be defined rather widely. Another

strange consequence is _ = O, _ = 0 for _ = O, i.e., the satellite

changes the sense of its rotation about its axis of symmetry reaching

points of greatest _ ( = the satellite turns back to the local vertical;

these points 8max exist according to the assumption, that the motion is

bounded).
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_he Magnetic Torque Acting on Artificial Satellites (Ref. 135):

This paper gives a general survey of the influence of magnetic fields

on the orientation of satellites. After a remark on the importance of

such magnetic effects first the motion of the angular momentum vector

is discussed. The torques are subdivided into two classes: first-order

perturbations, gravitational and magnetic (for the satellite as magne-

tic dipole) torques, and second-order perturbations as eddy currents,

magnetic hysteresis, atmospheric drag and internal vibration. The latter

are by one or two orders of magnitude smaller, generally. For the case

of a rotationally symmetrical satellite the equation of motion is given:

the gravitational torques again correspond to our specialization in

(6.312); the magnetic torques are split up into two parts, one of which

is due to the permanent magnetic dipole moment of the satellite, and

the other one to the induced dipole moment. Then, the gravitational

and magnetic torques are averaged over (a) one precessional period,(b)

one orbital revolution. By means of results of Explorer XI, Tiros I and

SR I it is shown, amongother conclusions, that this method of averaging

thoroughly yields useful results. In the second part, the decreasing

of the angular momentum due to eddy currents and hysteresis torques is

discussed. Aerodynamic braking torques are neglected.

Untersuchung yon magnetisch geregelten, erdnahen Satelliten (Ref. 136) /

Investigations on Magnetically Stabilized Satellites in low Orbits:

In the main, this work is a detailed representation of Ref. 152 by the

same authors. A larger part explains in detail the analytical method

used to solve these linearized equations of motion. By restriction to

deviations from the desired orientation of the satellite (taken as

reference system) small enough, this method can be more effective than
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the numerical integration of the (linearized) equations of motion,

by experience of the authors. Then considerations on the approximate

derivation of the gravitational, aerodynamic and magnetic torques

are given in full detail. For the rest, see under Ref. 132.

Ueber eine Metho_e zur Loesung des klassischen Vialkoerperproblems

mit Hilfe von Lie-Reihen / On a _ethod of Solving the Classical

Many-Body Problem Using Lie Series (Ref. 137): The paper starts

with a short explanation of the notion of Lie series and treats then

in (II) the splitting-up of the Lie operator. In (III) general

remarks on the method of recursion formulas follow while (IV) deals

in a detailed manner with the rather simple problem of deriving

recursion formulas for Lie series. (V) gives recursion formulas for

the restricted three body problem. The paper contains some remarks

which we do not understand. For example, on page 222, the unfavorable

influence of a too small step length on the accuracy of the result is

undervalued, obviously. On page 223, we find also some strange ideas:

the author seems to believe (on page 229 he formulated this statement

more precisely) that it is "not possible to give the solution exactly"

by help of the iteration method elaborated. The study of Ref. 9-12

could clarify this misunderstanding. The process of numerical

computation gives also rise to inaccuracies, inevitably, such that

the break-off error is certainly not the only error. Also to page 229:

In principle, one can always take such an approximation function that

only some few iteration steps are necessary. The same difficulties

appear on page 223. In contrast to these critical remarks, we completely

agree with the remark on the combination of the two methods.
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Our experience concerning the two computation methods in question

may be summarized as follows: Already for simple differential

equations as, e. g., the Mathieu equation (Ref. 6) it is rather

troublesome to code the recurrence formulas and it is possible to

attain the limits of capacity of little computers (e. g., store

capacity). The time needed to compute higher terms by the help of

recurrence formulas may increase very rapidly so that an iterative

method will be throughout competent (it depends upon the quantity

also for "pure algebraic operations"). Moreover the iteration method

provides an error estimation and therefore the possibility of

changing the step length, automatically. If one has no suitable

approximation a combination of recurrence and iteration method will

be advantageous: One avoids the unpleasant repeated application of

the Lie operator, calculates a rather suitable approximation by means

of recurrence formulas and starts the iteration process thereby;

once or two steps may then be enough, generally. The expense in

coding may be expected to correspond to the accuracy of the result.

Sometimes, this procedure can be more effective than the splitting up

of an approach suggested by physical reasons, in spite of its formal

elegance.
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Conclusion

As already mentioned in (6.41) the approximation used by us

probably lies at the lower limit of utilizability. The process of

combining recursion and iteration methods which we proposed there

_s supposed to increase the coding input considerably, but it is

very likely that no method of solving the Eulerian gyroscope

equations having such complex moments is free of remarkable troubles.

If the improvements proposed are realized it should, however, be

possible to compute the satellite's motion in a satisfactory way.

Compared to the solution used by us the computer time probably will

be increased in a considerable manner, but this fact should play

a minor part if big computers are used.

If one wants to keep the Eulerian angles unchanged the singu-

larities at _ = 0 and B = _ can be avoided by introducing a second

set of Eulerian angles such that the two axes corresponding to the

singularities are normal to one another; this can, e. g., be

achieved by a simple relabeling of the unit vectors of the systems

of main axes.

The formulas for the influence of the gravitational field on the

satellite's motion, which we have developed in (6.1), are supposed

to yield these effects exactly enough so as to take account of other

moments, too (see (6.12)). Possibly, also other terms neglected in

the potential formula (VI,14) will play a role, and its series

expansion will only be necessary up to the second term; according to

the above indicated method the series expansion is certainly easy to

perform. Moreover, we want to point to the fact that in the literature

which we reviewed no expansion of g(_) reaching so far could be found.
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